Unloading and consolidation of computing resources in the environment of fog and boundary computing | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 50. DOI: 10.17223/19988605/50/15

Unloading and consolidation of computing resources in the environment of fog and boundary computing

The article analyzes the management tasks in the fog and edge computing when requests of Internet of Things (IoT) devices are processing. The features of the managed objects are determined: the hardware heterogeneity, the mobility of resources, short response time, resource constraints, energy saving. Based on the review of publications over the past five years, the most urgent management problems in the fog and edge networks have been identified. These tasks include the routing of requests, resources offloading, the control of energy savings. The classification of the reasons for the transfer of tasks from one device to another is given. Examples of researches related to the problem of selecting a resource for service requests are given. Traditional models of resources and algorithms description are supplemented with new characteristics relevant to these networks. The example is an indicator of the instability of the presence of a resource in a fog or edge network. One more example is requests separating into two or more inputs with different characteristics, which is typical for many IoT applications. Power saving is the subject of many studies. Challenges are often a reflection of new realities. For example, the aim can be to distribute requests between the data centers in order to minimize the carbon footprint and to meet the requirements for response time. A specific problem is to attract resources to the common pool. Various algorithms are proposed based on game theory. The future priority tasks are listed in conclusion.

Download file
Counter downloads: 163

Keywords

интернет вещей, туманные вычисления, граничные вычисления, распределение задач, консолидация ресурсов, энергосбережение, стохастические модели, теория игр, internet of things, fog computing, edge computing, offloading, resource consolidation, power saving stochastic models, game theory

Authors

NameOrganizationE-mail
Petukhova Nina V.V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciencesnvpet@ipu.ru
Farkhadov Mais P.V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciencesmais@ipu.ru
Kachalov Dmitry L.V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciencescomdcompdim@mail.ru
Всего: 3

References

Fernando N., Loke S.W., Rahayu W. Mobile cloud computing: a survey // Future Generation Computer Systems. 2013. V. 29, No. 1. P. 84-106.
Ahmed A., Ahmed E. A survey on mobile edge computing // Proc. of the 10th Int. Conf. on Intelligent Systems and Control (ISCO), IEEE. 2016. P. 1-8.
Liu H., Eldarrat F., Alqahtani H., Reznik A., de Foy X., Zhang Y. Mobile Edge Cloud System: Architectures, Challenges, and Approaches // IEEE Systems Journal. 2017. V. 12 (3). Р. 2495-2508.
Gonzalez N., Goya W., Pereira R., Langona K., Silva E. et al. Fog computing: Data analytics and cloud distributed processing on the network edges // Proc. of the 2016 35th Int. Conf. of the Chilean Computer Science Society (SCCC). 2016. P. 1-9.
Рябоконь В.В., Кузькин А.А., Тутов С.Ю., Махов А.С. Обзор угроз информационной безопасности в концепции гранич ных вычислений // Вестник Евразийской науки. 2018. № 3. URL: https://esj.today/PDF/79ITVN318.pdf (дата обращения: 12.08.2019).
Roman R., Lopez J., Mambo M. Mobile edge computing, Fog et al.: a survey and analysis of security threats and challenges // Future Generation Computer Systems. 2018. V. 78, pt. 2. P. 680-698.
Aazam M., Zeadally S., Harras K.A. Offloading in fog computing for IoT: Review, enabling technologies, and research opportuni ties // Future Generation Computer Systems. 2018. V. 87, Oct. P. 278-289.
Sun Y., Lin F, Xu H. Multi-objective Optimization of Resource Scheduling in Fog Computing Using an Improved NSGA-II // Wireless Personal Communications. 2018. V. 102 (2). P. 1369-1385.
Aazam M., Huh E. Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT // IEEE 29th Int. Conf. on Advanced Information Networking and Applications. 2015. P. 687-694.
Yousefpour A., Ishigaki G., Gour R., Jue J.P. On Reducing IoT Service Delay via Fog Offloading // IEEE Internet Things J. 2018. V. 5, is. 2. P. 998-1010.
Fricker C., Guillemin F., Robert P., Guilherme T. Analysis of an Of-floading Scheme for Data Centers in the Framework of Fog Computing. 2016. 8 p. URL: https://arxiv.org/pdf/1507.05746.pdf (accessed: 12.08.2019).
Клименко А.Б., Сафроненкова И.Б. Решение задачи распределения вычислительной нагрузки в средах туманных вычислений на базе онтологий // Известия ЮФУ. Технические науки. 2018. № 8. С. 83-94
Sun Y., Zhang N. A resource-sharing model based on a repeated game in fog computing // Saudi Journal of Biological Sciences, 2017. V. 24 (3). P. 687-694.
Liua Y., Xua C., Zhanb Y., Liuc Z., Guana J., Zhang H. Incentive mechanism for computation offloading using edge computing: a Stackelberg game approach // Computer Networks. 2017. V. 129, pt. 2. P. 399-409.
Cao Z, Zhang H., Liu B, Sheng B. A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System. 2018. 10 р. URL: https://arxiv.org/pdf/1711.10102.pdf (accessed: 12.08.2019).
Zhang H., Liu B., Susanto H., Xue G., Sun T. Incentive mechanism for proximity-based mobile crowd service systems // IEEE INFOCOM : The 35th Annual IEEE Int. Conf. on Computer Communications. 2016. P. 1-9.
Chen Y., Chen H., Yang S., Gao X., Guo Y., Wu F. Designing Incentive Mechanisms for Mobile Crowdsensing with Intermediaries // Wireless Communications and Mobile Computing. 2019. Article ID 8603526. 20 р. URL: https://doi.org/10.1155/ 2019/8603526 (accessed: 12.08.2019).
Mtibaa A., Fahim A., Harras K., Ammar M. Towards resource sharing in mobile device clouds: Power balancing across mobile devices // Proc. of the 2013 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing, MCC 2013. P. 51-56.
Самуйлов К.Е. К построению модели разделения нагрузки в системе туманных вычислений // Информационные технологии и телекоммуникации. 2017. Т. 5, № 1. С. 8-14
Borylo P., Lason A., Rzasa J., Szymanski A., Jajszczyk A. Energy-aware fog and cloud interplay supported by wide area software defined networking // Proc. of the 2016 IEEE Inter. Conf. on Communications (ICC). 2016. P. 1-7.
Fan Q., Ansari N., Sun X. Energy Driven Avatar Migration in Green Cloudlet Networks // IEEE Communications Letters. 2017. V. 21, No. 7. P. 1601-1604.
Sardellitti S., Scutari G., Barbarossa S. Joint optimization of radio and computational resources for multicell mobile-edge computing // IEEE Transactions on Signal and Information Processing over Networks. 2015. V. 1, No. 2. P. 89-103.
 Unloading and consolidation of computing resources in the environment of fog and boundary computing | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 50. DOI: 10.17223/19988605/50/15

Unloading and consolidation of computing resources in the environment of fog and boundary computing | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 50. DOI: 10.17223/19988605/50/15

Download full-text version
Counter downloads: 609