Robust control of discrete-time queuing system | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 51. DOI: 10.17223/19988605/51/1

Robust control of discrete-time queuing system

We consider the discrete-time queuing system as a control object. Control problem consists in providing a desired system state. The system state is defined as the number of requests in the system. The number of requests in the system is controlled by rejection of arriving requests with some probability. It is assumed that, the probability of arrival and the probability of service completion of request are unknown and may change during the operation of the system. It is also assumed that the system operates under congestion conditions when the probability of arrival greater than the probability service completion of request. The control system should have a type of feedback and should have property of robustness in relation to change of parameters of a control object and the entering flow of requests. The control object as a finite Markov chain is described by the system of Kolmogorov equations p(k + 1) = Ap(k) + (Bp(k))u(k), y(k) = cp(k), where A, B, c are system matrices, y is the average number of requirements in the system, u is control signal. This is a bilinear system with restrictions on the state and control variables. Analysis of this system has shown that it is possible to proceed to a simpler description of the control object in the form of a first-order difference equation with uncertain parameters y(k + 1) = y(k) + au(k) + b. It is proposed to apply the classical proportional-integral feedback to solve the problem of controlling the state of this system. We have investigated the conditions of stability and robustness of the system with control. The results of numerical experiments and simulation confirm the possibility of using the proposed control in queuing systems operating under congestion conditions.

Download file
Counter downloads: 148

Keywords

дискретная система массового обслуживания, перегрузка, робастное управление, discrete-time queuing system, congestion, robust control

Authors

NameOrganizationE-mail
Perepelkin Evgenii AlexandrovichPolzunov Altai State Technical Universityeap@list.ru
Всего: 1

References

Назаров А.А. Управляемые системы массового обслуживания и их оптимизация. Томск : Изд-во Том. ун-та, 1984. 234 с.
Sennott L.I. Stochastic dynamic programming and the control of queuing systems. John Wiley & Sons, 1999. 328 p.
Миллер А.Б. Предотвращение перегрузок в сетях передачи данных с помощью методов стохастического управления // Автоматика и телемеханика. 2010. № 9. С. 70-82.
Миллер Б.М., Миллер Г.Б., Семенихин К.В. Методы синтеза оптимального управления марковским процессом с конеч ным множеством состояний при наличии ограничений // Автоматика и телемеханика. 2011. № 2. С. 111-130.
Alvarez T., Heras H., Reguera J. Controller Design for Congestion Control: Some Comparative Studies // Proc. of the World Congress on Engineering, London, U.K. 2014. V. II. P. 756-772.
Bisoy S.K., Pattnaik P.K. Design of feedback controller for TCP/AQM networks // Engineering Science and Technology : an International Journal. 2017. V. 20. P. 116-132.
Hamidian H., Beheshti M. A robust fractional-order PID controller design based on active queue management for TCP network // International Journal of Systems Science. 2018. V. 49 (1). P. 211-216.
Перепелкин Е.А. Робастный регулятор системы управления длиной очереди пакетов в буфере маршрутизатора // Ползуновский альманах. 2019. № 4. С. 44-46.
Fezazi N.E., Haoussi F.E., Tissir E.H., Alvarez T. Design of robust H» controllers for congestion control in data networks // J. of the Franklin Institute. 2017. V. 354, No. 17. P. 7828-7845.
Перепелкин Е.А. Робастное управление системой массового обслуживания // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 49. С. 23-28.
Breuer L., Baum D. An Introduction to Queueing Theory and Matrix-Analytic Methods. Springer, 2005. 271 p.
Острем К., Виттенмарк Б. Системы управления с ЭВМ. М. : Мир, 1987. 480 с.
 Robust control of discrete-time queuing system | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 51. DOI: 10.17223/19988605/51/1

Robust control of discrete-time queuing system | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 51. DOI: 10.17223/19988605/51/1

Download full-text version
Counter downloads: 472