Integral and multipoint necessary optimality conditions of quasi-singular controls in one optimal control problem
Consider the minimum functional problem under restrictions u(t) e U с Rr, t e T = [t0,t1], v(x)eV с Rq, x e X = [x0,x1], dz - = f (t, x, z,u), (t, x)e D = T x X, z (t0, x j = y (x), x e X , У = g (x, y, vj , x e X , У (x0 j = У0 · Here
0 is a constant vector. The necessary optimality condition in the form of the linearized maximum principle is proved, and the necessary optimality conditions for quasi-singular controls are established.
Keywords
система с распределенными параметрами, метод приращений, линеаризованный принцип максимума, необходимое условие оптимальности, квазиособое управление, многоточечное необходимое условие оптимальности, system with distributed parameters, increment method, linearized maximum principle, necessary optimality condition, quasi-singular control, multi-point necessary optimality conditionAuthors
Name | Organization | |
Rasulzade Shahla Majid gyzy | Institute of Control problems of Azerbaijan National Academy of Sciences | akja@rambler.ru |
References

Integral and multipoint necessary optimality conditions of quasi-singular controls in one optimal control problem | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 51. DOI: 10.17223/19988605/51/2