Modeling of vibration of a pipeline on the theory of Timoshenko
In this paper the oscillatory process of a viscoelastic pipeline is investigated numerically according to the theory of Timoshenko lying on an elastic foundation, described by the Winkler model. To describe the deformation processes of viscoelastic materials, the Boltzmann-Volterra integral model with weakly singular nuclei was used: a = E(1 - R* )e = E je - JR(t - т)е(т)Л j, here E is the modulus of elasticity of the material; R(t -x) is the relaxation kernel; t is the observation time; x is the time preceding the moment of observation. A mathematical model of pipelines conveying fluid flow has been developed with account for viscosity properties of structure material and the base of the pipeline: °!w , 2m V, m V2 , k w = G A K (1 D-)f02w , (mp + mf)fT ^ 2mjV - +f ^ +kww = GpApKs(1- R*)(^ + £ (P Л + P A) §=epIp (1 - R*) 0X2 - GpApKs (1 - R*) (fw Here mp , mf are the masses of the pipe and fluid, respectively, referred to the unit of length; If = J z 1dA; Af is the area limiting Af the volume of fluid flow; pf , p are the densities of the fluid and the pipe material, respectively. When modeling problems, a number of new dynamic effects were investigated: it was found that an account of viscoelastic properties of the pipeline material led to a decrease in the amplitude and frequency of vibrations; it was shown that an increase in the base parameter led to an increase in the vibration frequency of the pipeline; it was found that a decrease in the pipe mass per unit length led to an increase in the amplitude and frequency of vibrations.
Keywords
математическая модель,
вычислительный алгоритм,
вязкоупругость,
трубопровод,
теория Тимошенко,
mathematical model,
viscoelasticity,
pipeline,
computational algorithm,
Timoshenko theoryAuthors
Khudayarov Bakhtiyar Alimovich | Tashkent Institute of Irrigation and Agricultural Mechanization Engineers | bakht-flpo@yandex.ru |
Kucharov Olimzhon Ruzimurotovich | Scientific and Innovation Center of Information and Communication Technologies | k.r.olimjon@mail.ru |
Всего: 2
References
Yih-Hwang Lin, Yau-KunTsai. Nonlinear vibrations of Timoshenko pipes conveying fluid // International Journal of Solids and Structures. 1997. V. 34, No 23. P. 2945-2956.
Paidoussis M.P., Luu T.P., Laithier B.E. Dynamics of finite-length tubular beams conveying fluid // Journal of Sound and Vibra tion. 1986. V. 106, No. 2. P. 311-331.
Xia Tan, Xiao-Ye Mao, Hu Ding, Li-Qun Chen. Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe con veying fluid // Journal of Sound and Vibration. 2018. No. 428. P. 104-118.
Jijun Gu,Tianqi Ma, Menglan Duan. Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshen ko beam model // Ocean Engineering. 2016. No. 114. P. 185-191. DOI: 10.1016/j.oceaneng.2016.01.021
Yih Hwang Lin, Chih Liang Chu. Active modal control of Timoshenko pipes conveying fluid // Journal of the Chinese Institute of Engineers. 2001. V. 24 (1). P. 65-74. DOI: 10.1080/02533839.2001.9670607
Sallstrom J.H., Kesson B. Fluid-conveying damped Rayleigh-Timoshenko beams in transverse vibration analyzed by use of an exact finite element. Part I: Theory // Journal of Fluids and Structures. 1990. No. 4 (6). P. 561-572.
Tkachenko O. Construction of Mathematical Model of Complex Pipeline with Variable Geometry // Underground urbanization as a Prerequisite for Sustainable Development : 15th International scientific conference // Proc. Engineering. 2016. V. 165. P. 1261-1274.
Zhi-Yuan Liu, Lin Wang, Xi-Ping Sun. Nonlinear Forced Vibration of Cantilevered Pipes Conveying Fluid // Acta Mechanica Solida Sinica. 2018. V. 31, No. 1. P. 32-50.
Nematollahi M.S., Mohammadi H., Taghvaei S. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory // Chaos: an Interdisciplinary Journal of Nonlinear Science. 2019. V. 29, No. 3. DOI: 10.1063/1.5057738
Bahaadini R., Dashtbayazi M.R., Hosseini M., Khalili-Parizi Z. Stability analysis of composite thin-walled pipes conveying fluid // Ocean Engineering. 2018. V. 160. P. 311-323.
Reddy J.N., Wang C.M. Dynamics of Fluid-Conveying Beams: Governing Equations and Finite Element Models : CORE Report No. 2004-03. Centre for Offshore Research and Engineering (CORE), The National University of Singapore, 2004. 22 р.
Вольмир A.C. Нелинейная динамика пластинок и оболочек. М. : Наука, 1972.
Awrejcewicz J., Krysko A.V., Zhigalov M.V., Saltykova O.A., Krysko V.A. Chaotic vibrations in flexible multi-layered Bernoulli-Euler and Timoshenko type beams // Latin American Journal of Solids and Structures. 2008. V. 5. P. 319-363.
Колтунов M.A. Ползучесть и релаксация : учеб. пособие для втузов. М. : Высшая школа, 1976. 277 с.
Бадалов Ф.Б. Методы решения интегральных и интегро-дифференциальных уравнений наследственной теории вязкоупругости : справ. пособие. Ташкент : Мехнат, 1987. 269 с.
Badalov F.B., Eshmatov Kh., Yusupov M. One Method of Solution of System of Integro-differential Problems of Viscoelasticity // Journal of Applied Mathematics and Mechanics. 1987. V. 51. P. 867-871.
Badalov F.B., Abdukarimov A., Khudayarov B.A. Effect of the Hereditary Kernel on the Solution of Linear and Nonlinear Dynamic Problems of Hereditary Deformable Systems // Journal of Machinery Manufacture and Reliability. 2007. No. 36. P. 328-335.
Badalov F.B., Abdukarimov A., Khudayarov B.A. Numerical Investigation of the Influence of Rheological Parameters on the Character of Vibrations in Heredity-deformable Systems // Computational technologies. 2007. No. 12. P. 17-26.
Khudayarov B.A., Turaev F.Zh. Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid // Applied Mathematical Modelling. 2019. V. 66. P. 662-679.
Khudayarov B.A., Turaev F.Zh. Nonlinear supersonic flutter for the viscoelastic orthotopic cylindrical shells in supersonic flow // Aerospace Science and Technology. 2019. Vol. 84. P. 120-130.