Filtration and diagnostics in discrete stochastic systems with jump parameters and multiplicative perturbations
Let an model with multiplicative perturbations and jump parameters be described by the equation m x(k +1) = Ar(k)x(k) + Bl(l)u(k) + £ AsMl)x(k) QsMl) (k) + qY(k) (k), x(0) = x,, j=1 where x(k) e Rn is the state vector, y = y(k) is the Markov chain with r states (y1, y2,...,yr); x0 is a random vector (the variance N0i =M{(x0 - x0)(x0 - x0)T / у = Yi}, and the expectation x0 = M{x0} are assumed to be known) i = 1, r; Ay(k), By(k), Asy(k) are the known matrices; u(k) e Rm is the known vector; qy(lc)(k), 0sy(k) are the Gaussian random vector sequences with the following characteristics: M^k)} = 0, M^k)} = 0, M{ qj(l y(k) q^ j 1© = 1 (k), k j} = Q* A, M^ )(k) )(j)/ y© = = y(k),k j} = ®Y(k)8Ij. The probabilities of states of a jump process pj(k) = P{y(1) = j}, j = 1,r satisfy the equations pj(k +1) = £pt(k)p^j, pj(0) = pj,0, j = 1,r, i=1 where pi j is the probability of the transition from state i to state j. The observation vector is determined by the formula y(k ) = Sy(1 )x(k) + VY(1 )(k X where Vy^I ) is the Gaussian random sequence (M{vY№)(k)} = 0, M{vY№)(k) v^ }(j) / y© = y(k), k j} = У^Ь^ ). The solution to the synthesis problem for filtering the state vector x(k) and identifying the value of the jump parameter Y(k) included in the description of a linear discrete system with additive and multiplicative perturbations is obtained. The problem is solved by introducing into the model of the system an unknown input vector that appears when the identification error of a jump parameter and the use of Kalman filtering with an unknown input.
Keywords
фильтрация Калмана,
диагностика марковской цепи,
мультипликативные возмущения,
неизвестный вход,
Kalman filtering,
diagnostics of the Markov chain,
multiplicative disturbances,
unknown inputAuthors
Kim Konstantin Stanislavovich | National Research Tomsk State University | kks93@rambler.ru |
Smagin Valery Ivanovich | National Research Tomsk State University | vsm@mail.tsu.ru |
Всего: 2
References
Ugrinovskii V.A., Pota H.R. Decentralized control of power systems via robust control of uncertain Markov jump parameter systems // Int. J. Control. 2005. V. 78. P. 662-677.
Sales-Setien E., Penarrocha-Alos I. Markovian jump system approach for the estimation and adaptive diagnosis of decreased power generation in wind farms // Iet Control Theory and Applications, 2019. V. 13, is. 18. P. 3006-3018.
Zhang H., Gray W.S., Gonzalez O.R. Performance analysis of recoverable flight control systems using hybrid dynamical models // Proc. American Control Conf. 2005 (ACC). Portland. Jun. 08-10. 2005. P. 2787-2792.
Zhu Y., Zhong Z., Zheng W.X. and etc. HMM-based H-infinity filtering for discrete-time Markov jump LPV systems over unreliable communication channels // IEEE Transactions on Systems Man Cybernetics-Systems. 2018. V. 48, is. 12. P. 2035-2046.
Wang J., Yao F., Shen H. Dissipativity-based state estimation for Markov jump discrete-time neural networks with unreliable communication links // Neurocomputing. 2014. V. 139/SI. P. 107-113.
Wang H., Wang C., Gao H., Wu L. An LMI approach to fault detection and isolation filter design for Markovian jump system with mode-dependent time-delays // Proc. of the American Control Conf., Minneapolis, USA. 2006. P. 5686-5691.
Yao X., Wu L., Zheng W.X. Fault detection filter design for Markovian jump singular systems with intermittent measurements // IEEE Transactions on Signal Processing. 2011. V. 59/7. P. 3099-3109.
Gagliardi G., Casavola A., Famularo D.A. Fault detection and isolation filter design method for Markov jump linear parametervarying systems // Int. Journal of Adaptive Control and Signal. Processing. 2012. V. 26, is. 3/SI. P. 241-257.
Домбровский В.В., Пашинская Т.Ю. Прогнозирующее управление системами с марковскими скачками и авторегрессион ным мультипликативным шумом с марковским переключением режимов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2018. № 44. С. 4-9.
Dombrovskij V.V., Pashinskaya T.Y. Design of model predictive control for constrained Markov jump linear systems with multiplicative noises and online portfolio selection // Int. J. Robust Nonlinear Control. 2020. V. 30, No. 3. P. 1050-1070.
Costa O.L.V., Benites G.R.A.M. Linear minimum mean square filter for discrete-time linear systems with Markov jumps and multiplicative noises // Automatica. 2011. V. 47, No. 3. P. 466-476.
Liu W. On State Estimation of Discrete-Time Linear Systems with Multiplicative Noises and Markov Jumps // 32nd Chinese Control Conference. Xian, CHINA. JUL 26-28, 2013. P. 3744-3749.
Costa O.L.V., Benites G.R.A.M. Robust mode-independent filtering for discrete-time Markov jump linear systems with multiplicative noises // Int. J. of Control. 2013. V. 86, No. 5. P. 779-793.
Geng H., Wang Z., Liang Y. et al. State estimation for asynchronous sensor systems with Markov jumps and multiplicative noises // Information Sciences. 2017. V. 417. P. 1-19.
Смагин В.И., Поползухина Е.В. Синтез следящих систем управления для объектов со случайными скачкообразными параметрами и мультипликативными возмущениями // Вестник Томского государственного университета. 2000. № 271. С. 171-174.
Смагин В.И., Ломакина С.С. Робастные следящие регуляторы для непрерывных систем со случайными скачкообразными параметрами и мультипликативными возмущениями // Автоматика и вычислительная техника. 2004. № 4. С. 31-43.
Janczak D., Grishin Y. State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming // Control and Cybernetics. 2006. V. 35/4. P. 851-862.
Gillijns S., Moor B. Unbiased minimum-variance input and state estimation for linear discrete-time systems // Automatica. 2007. V. 43. P. 111-116.
Смагин В.И., Смагин С.В. Фильтрация в линейных дискретных нестационарных системах с неизвестными возмущениями // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 3(16). С. 43-51.
Smagin V., Koshkin G., Udod V. State estimation for linear discrete-time systems with unknown input using nonparametric technique // ACSR-Advances in Computer Science Research. 2015. V. 18. P. 675-677.
Смагин В.И. Прогнозирование состояний дискретных систем при неизвестных входах с использованием компенсаций // Известия вузов. Физика. 2016. Т. 59, № 9. С. 162-167.
Kim K.S., Smagin V.I. Robust filtering for discrete systems with unknown inputs and jump parameters // Automatic Control and Computer Sciences. 2020. V. 54, No. 1. Р. 1-9.
Athans M. The matrix minimum principle // Information and Control. 1968. V. 11. P. 592-606.
Li F., Shi P., Wu L. Control and filtering for semi-markovian jump systems. New York : Springer, 2016. 208 p.