Numerical method for testing robust control quality for linear one-dimensional dynamic control systems | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/1

Numerical method for testing robust control quality for linear one-dimensional dynamic control systems

Technological processes with multi-tempo components are quite widespread. A characteristic feature of the models of such processes is the allocation in the model of operators of the so - called" basic dynamics", describing the part of the control object that is subject to regulation, and operators of" structural disturbances " - these include those parts of the control object that already have the properties of stability and a given quality of control. In the synthesis of the regulator structural perturbations, as a rule, do not take into account, as a result of the transfer function of a closed system there is uncertainty. Since the properties of stability and control quality of the system are determined by the location of the poles of its transfer function, the question arises: at what operators of structural disturbances in the control object the closed system will still retain the properties of stability (robust stability) and control quality (robust control quality)? In the modal control scheme, the control quality is given as an area S on the complex plane; area S determines the desired location of the poles of the transfer function. Therefore, the questions of research (verification) of robust stability and robust control quality can be considered from a single point of view: is it necessary to check whether the roots of a given family of polynomials in the domain S? In the literature devoted to robust theory focuses on the problem of robust stability, and the problem of robust quality control fades into the background and is still not solved. The purpose of the study is to develop a robust control quality criterion for the case of structural disturbances in the control object model. Method: a theorem known as the "zero elimination principle" is generalized. The article provides a robust control quality criterion for a control system consisting of a control object with structural disturbances and a modal controller. Based on this criterion, a numerical method has been developed to check the robust quality of control. The proposed method is illustrated by an example.

Download file
Counter downloads: 165

Keywords

структурные возмущения, модальный регулятор, робастное качество управления, structural disturbances, modal regulator, robust control quality

Authors

NameOrganizationE-mail
Parshukov Andrej N.Industrial University of Tyumenanparshukov@mail.ru
Всего: 1

References

Крушель Е.Г., Степанченко О.В. Синтез и моделирование цифровых управляющих систем с двойной шкалой времени. М. : Машиностроение-1, 2006. 96 с.
Юркевич В.Д. Синтез нелинейных нестационарных систем управления с разнотемповыми процессами. СПб. : Наука, 2000. 288 с.
Паршуков А.Н. Методы синтеза модальных регуляторов. Тюмень : ТюмГНГУ, 2009. 84 с.
Кузовков Н.Т. Модальное управление и наблюдающие устройства. М. : Машиностроение, 1976. 184 с.
Ackermann J.A., Bartlett D., Kaesbauer W.S., Steinhauser R. Robust control. Systems with uncertain physical parameters. London: Springer-Verlag, 1993. 413 p.
Barmish B.R. New tools for robustness of linear systems. New York : MacMillan, 1994. 394 p.
Поляк Б.Т., Цыпкин Я.З. Частотные критерии робастной устойчивости и апериодичности линейных систем // Автоматика и телемеханика. 1990. № 9. С. 45-54.
Поляк Б.Т., Цыпкин Я.З. Устойчивость и робастная устойчивость однотипных систем // Автоматика и телемеханика. 1996. № 11. С. 91-104.
Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М. : Наука, 2002. 303 с.
Doyle J.C., Glover K., Khargonekar P.P., Francis B.A. State-space solutions to standard H2 and И» control problems // IEEE Transactions on Automatic Control. 1989. V. 34, No. 8. P. 831-847.
Kogan M. M. Optimal Discrete-time H»/y0 Filtering and Control under Unknown Covariances // Int. J. Control, 2016. V. 89, No. 4. P. 691-700.
Честнов В.Н. Ида-подход к синтезу регуляторов при параметрической неопределенности и полигармонических внешних возмущениях // Автоматика и телемеханика. 2015. № 6. С. 112-127.
Сельвесюк Н.И. Аналитический синтез робастных регуляторов заданной точности при внешних возмущениях // Известия РАН. Теория и системы управления. 2016. № 4. С. 62-72. DOI: 10.7868/S0002338816040107.
Баландин Д.В., Коган М.М., Кривдина Л.Н. Федюков А.А. Синтез обобщенного Н»-оптимального управления в дискретном времени на конечном и бесконечном интервалах // Автоматика и телемеханика. 2014. № 1. С. 3-22.
Паршуков А.Н. Метод синтеза модального регулятора для объекта управления с интервальной неопределенностью коэффициентов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 4 (49). С. 14-22.
 Numerical method for testing robust control quality for linear one-dimensional dynamic control systems | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/1

Numerical method for testing robust control quality for linear one-dimensional dynamic control systems | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/1

Download full-text version
Counter downloads: 276