Analysis in non-stationary regime of exponential G-network with bypass of queueing systems positive customers | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/8

Analysis in non-stationary regime of exponential G-network with bypass of queueing systems positive customers

The study of an open exponential queuing network (SEMO) with single-line queuing systems (QS) is carried out. QS are characterized by the presence of bypasses, positive orders and the possibility of receiving negative orders in them. The network receives two independent simplest flows of applications. The first flow is formed from ordinary (positive) customers, the second - from negative customers, the arrival of each of which into the system destroys exactly one positive customer in the queue, if any. Negative orders do not require service; positive orders are serviced in the network systems in accordance with the FIFO discipline. Positive claims with a probability depending on the state of the node when they are directed to it join the queue, and with an additional probability they instantly bypass it and behave in the future as served. To solve the system of difference-differential equations (RDE) for non-stationary probabilities of states of a network operating in saturation mode, it is proposed to use the method of multidimensional generating functions.

Download file
Counter downloads: 125

Keywords

G-сеть с обходами систем заявками, нестационарные вероятности состояний, многомерная производящая функция, G-network with bypass of queueing systems, non-stationary state probability, multidimensional generation function

Authors

NameOrganizationE-mail
Kopats Dmitry Ya.Grodno State Universitydk80395@mail.ru
Matalytski Mihail A.Grodno State Universitym.matalytski@gmail.com
Всего: 2

References

Gelenbe E. Product-form queueing networks with negative and positive customers // Journal of Applied Probability. 1991. No. 28. P. 656-663.
Gelenbe E., Schassberger R. Stability of product-form G-networks // Probability in Engenering and Informational Science. 1992. No. 6. P. 271-276.
Науменко В.В., Маталыцкий М.А. Анализ сетей с положительными и отрицательными заявками в переходном режиме // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 4 (25). С. 61-70.
Малинковский Ю.В. Сети массового обслуживания с обходами узлов заявками // Автоматика и телемеханика. 1991. № 2. С. 102-110.
Маталыцкий М.А., Науменко В.В. Анализ сети с обходами систем обслуживания разнотипными заявками // Веснік Гродзенскага дзяржаунага універсітэта імя Янкі Купалы. Серыя 2. Матэматыка. Фізіка. Інфарматыка, вылічальная тэхніка і кіраванне, 2013. № 1. С. 152-159.
Малинковский Ю.В., Никитенко О.А. Стационарное распределение состояний сетей с обходами и отрицательными заяв ками // Автоматика и телемеханика. 2000. № 8. С. 79-85.
 Analysis in non-stationary regime of exponential <i>G</i>-network with bypass of queueing systems positive customers | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/8

Analysis in non-stationary regime of exponential G-network with bypass of queueing systems positive customers | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/8

Download full-text version
Counter downloads: 278