Rational interpolation of transfer functions of linear dynamic systems with distributed parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 53. DOI: 10.17223/19988605/53/1

Rational interpolation of transfer functions of linear dynamic systems with distributed parameters

A method of rational interpolation of the transfer function of linear dynamic systems with distributed parameters is presented, the values of which can be found by numerical methods or by calculating the transcendental functions of the Laplace integral transform variable. The method allows one to define explicitly the transfer function and, in particular, the characteristic equation of such a degree that is sufficient to meet the accuracy requirements when calculating the root quality criteria for the dynamics of automatic control systems. According to the proposed method, rational interpolation is reduced to solving a system of linear equations, the order of which is much lower (more than twice) the order of similar systems used for rational interpolation of functions by known methods. The properties of this system are such that its solution can be obtained by special fast methods of the quadratic order of complexity. An example of the practical use of an iterative algorithm for rational interpolation and calculation with a given accuracy of the root quality criteria for the dynamics of a support with gas lubrication is considered.

Download file
Counter downloads: 125

Keywords

rational interpolation, linear dynamic system, transfer function, system with distributed parameters, discrete Fourier transform

Authors

NameOrganizationE-mail
Kodnyanko Vladimir A.Siberian Federal Universitykowlad@rambler.ru
Всего: 1

References

Fraleigh J.B., Beauregard R.A. Linear Algebra. Reading, MA : Addison-Wesley. 1995. 608 p.
Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. Спб. : Профессия, 2003. 752 с.
Riley K.F., Hobson M.P., Bence S.J. Mathematical methods for physics and engineering. Cambridge University Press, 2010. 455 p.
Middlebrook R.D. Input filter considerations in design and application of switching regulators // IEEE Industry Applications Society Annual Meeting. 1976. P. 366-382.
Carrol J. An input impedance stability criterion allowing moreflexibility for multiple loads which are independently designed // Naval Air Warfare Center, Aircraft Division, Indianapolis. B/812. 1992. Jan. 22.
Wildrick C.M., Lee F.C., Cho B.H., Choi B. A method of defining the load impedance specificationfor a stable distributed power system // IEEE Transactions on Power Electronics. 1995. P. 280-285.
Коднянко В.А. Устойчивость энергосберегающей адаптивной радиальной гидростатической опоры с ограничением вы ходного потока смазки // Журнал Сибирского федерального университета. Техника и технологии. 2011. Т. 6, № 4. С. 907-914.
Bradie B.A. Friendly Introduction to Numerical Analysis. Upper Saddle River, NJ : Pearson Prentice Hall, 2006. 933 р.
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in C : the Art of Scientific Computing. Cam bridge : Cambridge University Press, 2002. 1262 р.
Golub G.H., Van Loan C.F. Matrix computations. Baltimore, MD : Johns Hopkins University Press, 1996. 694 p. (John Hopkins Studies in the Mathematical Sciences).
Heinig G., Rost K. Efficient inversion formulas for Toeplitz-plus-Hankelmatrices using trigonometric transformations // Structured Matrices in Mathematics, Computer Science, and Engineering / V. Olshevsky (ed.). Providence, RI, 2001. P. 247-264. (AMS-Series Contemporary Mathematics; vol. 281)
Smith S.W. The Scientist and Engineer's Guide to Digital Signal Processing. San Diego, CA : California Technical Publishing, 1999. 630 p.
Trench W.F. An algorithm for the inversion of finite Hankel matrices // SIAMJ. Appl. Math. 1965. V. 13. P. 1102-1107.
Zohar S. Toeplitz matrix inversion: The algorithm of W.F. Trench // J. Assoc.Comput. Mach. 1967. V. 16. P. 592-601.
Blahut R.E. Fast algorithms for signal processing. Cambridge University Press. 2010. 469 p. DOI: 10.1017/CBO9780511760921
Beale E.M.L. Cycling in the dual simplex algorithm // Naval Research Logistics Quarterly. 1955. V. 2 (4). P. 269-276. DOI: 10.1002/nav. 3 800020406
Voevodin V.V., Tyrtyshnikov E.E. Toeplitz matrices and their applications // Computing Methods in Applied Sciences and Engineering. Amsterdam : North-Holland, 1984. P. 75-85.
Петров О.А. Быстрый алгоритм решения систем уравнения с теплицевой матрицей // Инфокоммуникационные технологии. 2006. Т. 4, №1. С. 57-59.
Rahman Q.I., Schmeisser G. Analytic theory of polynomials. Oxford: Oxford University Press, 2002. XIV, 742 p. (London Mathematical Society Monographs. New Series; 26).
Коднянко В.А. Численный расчет статических характеристик однорядного щелевого газостатического подвеса // Проблемы машиностроения и надежности машин. 2002. № 2. С. 17-19.
Constantinescu V.N. Gas Lubrication. New York : American Society of Mechanical Engineers, 1969. 621 с.
Muir T. A treatise on the theory of determinants. New York : Dover Publications, 1960. 766 р.
 Rational interpolation of transfer functions of linear dynamic systems with distributed parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 53. DOI: 10.17223/19988605/53/1

Rational interpolation of transfer functions of linear dynamic systems with distributed parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 53. DOI: 10.17223/19988605/53/1

Download full-text version
Counter downloads: 484