The Pontryagin maximum principle for nonlinear fractional order difference equations
The problem of optimal control of an object described by a system of nonlinear difference equations of fractional order is considered. A discrete analogue of the Pontryagin maximum principle is established.
Download file
Counter downloads: 223
Keywords
Pontryagin maximum principle, fractional order difference equation, optimal control, permissible controlAuthors
Name | Organization | |
Aliyeva Saadat Tofig | Baku State University | saadata@mail.ru |
References
Пропой А.И. Элементы теории оптимальных дискретных процессов. М. : Наука, 1973. 258 с.
Мансимов К.Б. Дискретные системы. Баку : Изд-во Бакинского гос. ун-та, 2002, 114 с.
Розоноэр Л.И. Принцип максимума Л.С. Понтрягина в теории оптимальных систем. I // Автоматика и телемеханика. 1959. Т. 20, вып. 10. C. 1320-1334.
Samko S.G., Kilbas A.A., Marichev O.I. Integrals and derivatives of fractional order and some of their applications. Minsk : Nauka i Tekhnika, 1987. 688 р.
Goodric C., Piterson A.C. Discrete fractional calculus. New York : Springer, 2015. 556 р.
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam : Elsevier, 2006. 523 р.
Нахушев A.M. Дробное исчисление и его применение. М. : Физматлит, 2003. 272 с.
Miller K., Ross B. An introduction to the fractional calculus and fractional differential equations. New York : Wiley, 1993. 366 p.
Podlubny I. Fractional differential equations. San Diego : Acad. Press, 1999. 340 p.
Нахушев A.M. О непрерывных дифференциальных уравнениях и их разностных аналогах // ДАН СССР. 1988. Т. 300, № 4. С. 729-732.

The Pontryagin maximum principle for nonlinear fractional order difference equations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 54. DOI: 10.17223/19988605/54/1
Download full-text version
Counter downloads: 561