Identification of discrete time systems with random jump parameters and incomplete information
The identification problem for a discrete system with jump parameters is considered. The proposed approach assumes the use of estimates constructed using the Kalman extrapolator with estimates of unknown inputs and estimates of unknown inputs in model of observation vector. The example is given to illustrate the proposed approach.
Keywords
incomplete information,
estimates,
Markov chain,
identification algorithmAuthors
Kim Konstantin S. | Tomsk State University | kks93@rambler.ru |
Smagin Valery I. | Tomsk State University; Tomsk State University of Radio Electronics and Control Systems | vsm@mail.tsu.ru |
Всего: 2
References
Athans, M. (1968) The matrix minimum principle. Information and Control. 11. pp 592-606.
Li, F., Shi, P. & Wu, L. (2016) Control and Filtering for Semi-Markovian Jump Systems. New York: Springer.
Koshkin, G. & Smagin, V. (2016) Kalman filtering and forecasting algorithms with use of nonparametric functional estimators. Springer Proceedings in Mathematics & Statistics. 175. pp. 75-84. DOI: 10.1007/978-3-319-41582-6_6
Smagin, V.I. (2017) Prediction of states of discrete systems with unknown input of the model using compensation. Russian Physics Journal. 59(9). pp.1507-1514. DOI: 10.1007/s11182-017-0937-6
Smagin, V.I. & Smagin, S.V. (2011) Filtering for linear not stationary discrete system with unknown disturbances. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika - Tomsk State University Journal of Control and Computer Science. 16(3). pp. 43-50.
Gillijnsand, S. & Moor, B. (2007) Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica. 43. pp. 111-116. DOI: 10.1016/j.automatica.2006.08.002
Kim, K.S. & Smagin, V.I. (2020) Filtration and diagnostics in discrete stochastic systems with jump parameters and multiplicative perturbations. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika - Tomsk State University Journal of Control and Computer Science. 51. pp. 79-86. DOI: 10.17223/19988605/51/9
Gagliardi, G., Casavola, A. & Famularo, D.A. (2012) Fault detection and isolation filter design method for Markov jump linear parameter-varying systems. International Journal of Adaptive Control and Signal Processing. 26(3/ SI). pp. 241-257. DOI: 10.1002/acs.1261
Yao, X., Wu, L. & Zheng, W.X. (2011) Fault detection filter design for Markovian jump singular systems with intermittent measurements. IEEE Transactions on Signal Processing. 59/7. pp. 3099-3109. DOI: 10.1109/TSP.2011.2141666
Wang, H., Wang, C., Gao, H. & Wu, L. (2006) An LMI approach to fault detection and isolation filter design for Markovian jump system with mode-dependent time-delays. Proc. of the American Control Conference. Minneapolis. USA. pp 5686-5691. DOI: 10.1109/ACC.2006.1657631
Wang, J., Yao, F. & Shen, H. (2014) Dissipativity-based state estimation for Markov jump discrete-time neural networks with unreliable communication links. Neurocomputing. 139/SI. pp. 107-113. DOI: 10.1016/j.neucom.2014.02.055
Zhu, Y., Zhong, Z., Zheng, W.X. et al. (2018) HMM-based H-infinity filtering for discrete-time markov jump LPV systems over unreliable communication channels. IEEE Transactions on Systems Man Cybernetics-Systems. 48(12). pp. 2035-2046. DOI: 10.1109/TSMC.2017.2723038
Zhang, H., Gray, W.S. & Gonzalez, O.R. (2005) Performance analysis of recoverable flight control systems using hybrid dynamical models. Proc. American Control Conference 2005 (ACC). Portland, Jun 08-10, 2005. pp. 2787-2792.
Ugrinovskii, V.A. & Pota, H.R. (2005) Decentralized control of power systems via robust control of uncertain Markov jump parameter systems. International Journal of Control. 78. pp. 662-677. DOI: 10.1109/CDC.2004.1429255
Sales-Setien, E. & Penarrocha-Alos, I. (2019) Markovian jump system approach for the estimation and adaptive diagnosis of decreased power generation in wind farms. Iet Control Theoryand Applications. 13(18). pp. 3006-3018. DOI: 10.1049/iet-cta.2018.6199
Cajueiro, D.O. (2002) Stochastic optimal control of jumping Markov parameter processes with applications to finance. Ph.D. Thesis. InstitutoTecnologico de Aeronautica-ITA, Brazil.
Dombrovskii, V., Obyedko, T. & Samorodova, M. (2018) Model predictive control of constrained markovian jump nonlinear stochastic systems and portfolio optimization under market frictions. Automatica. 87. pp. 61-68. DOI: 10.1016/j.automatica.2017.09.018