Estimation procedure of the uniform distribution parameter of unextendable dead time duration in a generalized recurrent asynchronous flow of events in special case
We consider a generalized recurrent asynchronous flow of events (generalized MMPP-flow), which is a common mathematical model of information flows of messages operating in telecommunication and information-computing communication networks, and belongs to the class of doubly stochastic flows of events. The operation of the flow is considered under the conditions of a random non-prolonging dead time distributed according to a uniform law on the interval [0, T*]. A special case is considered when restrictions are imposed on the flow parameters, in which a generalized asynchronous flow of events becomes recurrent. The parameter T* of the dead time is estimated by the method of moments. The results of statistical experiments are presented.
Keywords
method of moments,
parameter estimation,
unextendable random dead time,
recurrent generalized asynchronous flow of eventsAuthors
Nezhel’skaya Lyudmila A. | Tomsk State University | ludne@mail.tsu.ru |
Pershina Anna A. | Tomsk State University | diana1323@mail.ru |
Всего: 2
References
Лифшиц А.Л., Мальц. Э.А. Статистическое моделирование систем массового обслуживания. М.: Сов. радио, 1978. 248 с.
Соболь И.М. Численные методы Монте-Карло. М. : Наука, 1973. 312 с.
Шуленин В.П. Математическая статистика. Томск : Изд-во НТЛ, 2012. Ч. 1. 540 с.
Малинковский Ю.В. Теория вероятностей и математическая статистика. Гомель : ГГУ им. Ф. Скорины, 2004. Ч. 2: Математическая статистика. 146 с.
Горцев А.М., Нежельская Л.А. Оценивание параметров синхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № S1-1. С. 24-29.
Горцев А.М., Леонова М.А., Нежельская Л.А. Совместная плотность вероятностей длительности интервалов обобщенного асинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 4 (21). С. 14-25.
Нежельская Л.А., Першина А.А. Оценивание параметра равномерного распределения длительности непродлевающегося мертвого времени в обобщенном асинхронном потоке событий в особом случае // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2020. № 51. С. 87-93.
Горцев А.М., Зуевич В.Л. Оптимальная оценка параметров асинхронного дважды стохастического потока событий с произвольным числом состояний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2 (11). С. 44-65.
Глухова Е.В., Терпугов А.Ф. Оценка интенсивности пуассоновского потока событий при наличии продлевающегося мёртвого времени // Известия вузов. Физика. 1995. Т. 38, № 3. С. 22-31.
Горцев А.М., Завгородняя М.Е. Оценивание параметра непродлевающегося мертвого времени случайной длительности в пуассоновском потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2017. № 40. С. 32-40.
Васильева Л.А. Оценивание параметров дважды стохастического потока событий в условиях присутствия мертвого времени // Вестник Томского государственного университета. 2002. № S1-1. C. 9-13.
Горцев А.М., Ниссенбаум О.В. Оценивание длительности мертвого времени и параметров асинхронного альтернирующего потока событий с инициированием лишнего события // Вестник Томского государственного университета. 2004. № 284. С. 137-145.
Леонова М.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2 (23). С. 54-63.
Nezhel’Skaya L. Probability density function for modulated MAP event flows with unextendable dead time // Communications in Computer and Information Sciences. 2015. V. 564. P. 141-151.
Горцев А.М., Калягин А.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мертвого времени в обобщённом полусинхронном потоке // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 1 (30). С. 27-37.
Горцев А.М., Леонова М.А., Нежелъская Л.А. Сравнение МП- и ММ-оценок длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 4 (25). С. 32-42
Леонова М.А., Нежельская Л.А. Вероятность ошибки при оценивании состояний обобщенного асинхронного потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 2 (19). С. 88-101.
Вишневский В.М., Дудин А.Н., Клименок В.И. Стохастические системы с коррелированными потоками. Теория и применение в телекоммуникационных сетях. М. : Техносфера, 2018. 564 с.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 256 c.
Вишневский В.М., Ларионов А.А. Открытая сеть массового обслуживания с коррелированными входными потоками для оценки производительности широкополосных беспроводных сетей // Информационные технологии и математическое моделирование (ИТММ-2016) : материалы XV Междунар. конф. Катунь, 12-16 сентября 2016. Томск : Изд-во ТГУ, 2016. Ч. 1. С. 36-50.
Vishnevsky V.M., Larionov A.A., Smolnikov R.V. Optimization of topological structure of broadband wireless networks along the long traffic routes // Distributed Computer and Communications Networks: Control, Computation, Communications : proc. of the 18th Int. Scientific Conf. (DCCN-2015) (Moscow, 19-22 october 2015). Moscow : ICS RAS, 2015. P. 27-35.
Вишневский В.М., Ляхов А.И. Оценка пропускной способности локальной беспроводной сети при высокой нагрузке и помехах // Автоматика и телемеханика. 2001. № 8. P. 81-96.
Basharin G.P., Gaidamaka Y.V., Samouylov K.E. Mathematical Theory of Teletraffic and Its Application to the Analysis of Multi service Communication of Next Generation Networks // Automatic Control and Computer Sciences. 2013. V. 47, № 2. P. 62-69.
Башарин Г.П., Самуйлов К.Е., Яркина Н.В., Гудкова Н.А. Новый этап развития математической теории телеграфика // Автоматика и телемеханика. 2009. № 12. С. 16-28.
Neuts M.F. A versatile Markovian point process // Journal of Applied Probability. 1979. V. 16, № 4. P. 764-779.
Lucantoni D.M. New results on single server with a bath Markovian arrival process // Communications in Statistics Stochastic Models. 1991. V. 7, № 1. P. 1-46.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 2 // Известия АН СССР. Техническая кибернетика. 1980. № 1. С. 55-61.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 1 // Известия АН СССР. Техническая кибернетика. 1979. № 6. С. 92-99.
Kingman J.F.C. On doubly stochastic Poisson process // Proceedings of the Cambridge Philosophical Society. 1964. V. 60, is. 4. P. 923-930.
Cox D.R. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables // Proceedings of the Cambridge Philosophical Society. 1955. V. 51, is. 3. P. 433-441.