A new approach to solving the problem of robotmanipulator control
The problem of control of a robotic manipulator, consisting of three links: an arrow, a handle and an actuator, connected by hinges, is considered. The configuration of the robot is uniquely determined by the angles between the links. These angles are assumed to be measurable. It is also assumed that from these measurements it is possible to calculate the moments of inertia and weight moments (the product of weight per shoulder) of the links. The result is a simple mathematical model describing the movement of the robot, for which a simple control algorithm is obtained. The results of numerical simulation for the problems of the transition of the manipulator from the initial state to the working state and the movement of the manipulator along the surface are presented.
Keywords
manipulation object,
robotic arm,
model of control over motion of center of mass of a moving object,
layoutAuthors
Paraev Jury I. | Tomsk State University | paraev@mail.ru |
Kolesnikova Svetlana I. | St. Petersburg State University of Aerospace Instrumentation | skolesnikova@yandex.ru |
Tsvetnitskaya Svetlana A. | Tomsk State University | svetasa@sibmail.com |
Всего: 3
References
Матюхин В.И. Управление движением манипулятора. М. : Науч. изд. Ин-та проблем управления им. В.А. Трапезникова РАН, 2010. 95 с.
Матюхин В.И. Непрерывные универсальные законы управления манипуляционным роботом // Автоматика и телемеха ника. 1997. № 4. С. 69-82.
Матюхин В.И. Стабилизация движений манипулятора вдоль заданной поверхности // Автоматика и телемеханика. 2011. № 4. С. 71-85.
Матюхин В.И., Пятницкий Е.С. Управление движением манипуляционных роботов на принципе декомпозиции при учете динамики приводов // Автоматика и телемеханика. 1989. № 9. С. 67-81.
Dwivedy S.K., Eberhard P. Dynamic analysis of flexible manipulators, a literature review // Mechanism and Machine Theory. 2006. № 41. P. 749-777.
Yu H., Liu Y., Hasan M.S. Review of modelling and remote control for excavators // International Journal of Advanced Mechatronic Systems. 2009. V. 2, № 1. P. 68-80.
Уткин В.И. Скользящие режимы в задачах оптимизации и управления. М. : Наука, 1981. 368 с.
Синергетика и проблемы теории управления : сб. науч. тр. / под ред. А.А. Колесникова. М. : Физматлит, 2004. 504 с.
Kolesnikov A.A., Kolesnikovа S.I., Tsvetnitskaya S.A. Discrete Stochastic Regulator on a Manifold, Minimizing Dispersion of the Output Macrovariable // Mekhatronika, Avtomatizatsiya, Upravlenie. 2019. № 12 (20). P. 707-713. URL: https://doi.org/10.17587/mau.20.707-713 (accessed: 17.12.2020).
Kolesnikova S., Tsvetnitskaya S., Pobegailo P. An Extension of the Method of Aggregated Regulators to a Discrete Stochastic Object // International Siberian Conference on Control and Communications, SIBCON. DOI: 10.1109/SIBCON.2019.8729595. URL: https://ieeexplore.ieee.org/document/8729595. (accessed: 17.12.2020).
Matyukhin, V.I. (2010) Upravlenie dvizheniem manipulyatora [Manupulator motion control]. Moscow: RAS.
Matyukhin, V.I. (1997) Continuous universal laws of control of a manipulative robot. Avtomatika i telemehanikale - Automation andRemout Control. 4. pp. 69-82.
Matyukhin, V.I. (2011) Stabilization of manipulator movements along a given surface. Avtomatika i telemehanikale - Automation and Remout Control. 4. pp. 71-85.
Matyukhin, V.I. & Pyatnitskiy, E.S. (1989) Motion control of manipulation robots based on the principle of decomposition taking into account the dynamics of drives. Avtomatika i telemehanikale - Automation and Remout Control. 9. pp.67-81.
Dwivedy, S.K. & Eberhard, P. (2006) Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory. 41. pp. 749-777. DOI: 10.1016/j.mechmachtheory.2006.01.014
Yu, H., Liu, Y. & Hasan, M.S. (2009) Review of modelling and remote control for excavators. International Journal of Advanced Mechatronic Systems. 2(1). pp. 68-80. DOI: 10.1504/IJAMECHS.2010.030850
Utkin, V.I. (2012) Skol'zyashchie rezhimy v zadachakh optimizatsii i upravleniya [Sliding modes in control and optimization]. Berlin: Springer.
Kolesnikov, A.A. (ed.) (2004) Sinergetika iproblemy teorii upravleniya [Synergetics and problems of control theory]. Moscow: Fismatlit.
Kolesnikov, A.A., Kolesnikova, S.I. & Tsvetnitskaya, S.A. (2019) Discrete Stochastic Regulator on a Manifold, Minimizing Dispersion of the Output Macrovariable. Mekhatronika, Avtomatizatsiya, Upravlenie. 12(20). pp. 707-713. DOI: 10.17587/mau.20.707-713
Kolesnikova, S., Tsvetnitskaya, S. & Pobegailo, P. (2019) An Extension of the Method of Aggregated Regulators to a Discrete Stochastic Object. International Siberian Conference on Control and Communications, SIBCON. DOI: 10.1109/SIBCON.2019.8729595