The concept of a multi-level system of digital twins (on the example of geomagnetic data) | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 55. DOI: 10.17223/19988605/55/4

The concept of a multi-level system of digital twins (on the example of geomagnetic data)

The problem of spatial interpolation of data with the required accuracy is especially relevant for processes and phenomena of natural origin, which are characterized by pronounced spatial anisotropy of information. An example of this is geomagnetic data as a result of observing the parameters of the Earth's magnetic field and its variations. Technical means of recording such data, as a rule, are limited by the possibilities of physical placement due to the high requirements for the hardware and software necessary for information and measurement monitoring, as well as the associated economic and time costs. The impossibility of placing monitoring technical means in certain geographic locations increases the information entropy of the processes that take place there and are relevant for study and observation. The solution to this problem is partly possible by using modern geoinformation technologies, the algorithms of which allow interpolating spatial data by known values. However, the accuracy of spatial interpolation is not always satisfactory: in particular, the restoration of geomagnetic data in this way provides a root mean square error of 7.3 to 11.2 nT for various spatial regions, which significantly exceeds the error of 1 nT permissible by the standards. In this regard, in order to solve the indicated problem, the concept of a multi-level system of digital twins of technical objects is proposed. The concept is based on the idea of multiple repetition of pairs "digital twin - physical prototype" to form a hierarchical multilevel structure of fractal type. Duplex inter-level information interaction is carried out through the use of specialized data stores that aggregate information coming from the components of the level (while the simultaneous presence of both elements of the pair is optional). The physical prototypes are both directly technical objects and pairs of the form "digital twin - physical prototype", as a result of which the structure formed in this case functions according to the principles of information backup. The sequential creation of the levels of the system of digital twins allows to significantly increase the coverage area of the earth and near-earth surfaces by physical and virtual technical means, the functioning of which is modeled using machine learning methods that form interpolated values based on retrospective analysis of known data. It is expected that for geomagnetic data, the use of a multilevel system of digital twins will allow collecting information on the state of the geomagnetic field and its variations in hard-to-reach geographic locations, for example, in the Arctic zone, where the placement of magnetometric equipment is extremely difficult. Studies have shown that the application of the proposed concept for solving the problem of spatial interpolation of geomagnetic data provides a root-mean-square error from 0.53 to 1.02 nT, which falls within the range regulated by the standards.

Download file
Counter downloads: 72

Keywords

digital twins, data processing, correlation analysis, fractal sets, spatial clusters

Authors

NameOrganizationE-mail
Vorobev Andrei V.Ufa State Aviation Technical Universitygeomagnet@list.ru
Всего: 1

References

Аббасова Т.С. Развитие виртуальных инструментов для создания цифровых двойников // Информационно-технологический вестник. 2019. № 2 (20). C. 79-88.
Stark R., Fresemann C., Lindow K. Development and operation of Digital Twins for technical systems and services // CIRP Annals. 2019. № 68. P. 129-132.
Alam K.M., El Saddik A. C2PS: a Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems // IEEE Access. 2017. P. 2050-2062.
Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems // Transdis ciplinary Perspectives on Complex Systems: New Findings and Approaches / F.-J. Kahlen, S. Flumerfelt, A. Alves (eds.), Cham : Springer International Publishing, 2017. P. 85-113.
Bakhvalov Yu., Kopylov I. Training and assessment the generalization ability of interpolation methods // Computer Research and Modeling. 2015. № 7. P. 1023-1031. DOI: 10.20537/2076-7633-2015-7-5-1023-1031.
Ковалёв С.П. Проектирование информационного обеспечения цифровых двойников энергетических систем // Системы и средства информ. 2020. № 30:1. С. 66-81
Дмитриев В.М., Ганджа Т.В. Принцип формирования многоуровневых компьютерных моделей SCADA-систем для управления сложными технологическими объектами // Информатика и системы управления. 2013. № 2 (36). С. 24-36.
Дмитриев В.М., Ганджа Т.В., Панов С.А. Система виртуальных инструментов и приборов для автоматизации учебных и научных экспериментов // Программные продукты и системы. 2016. № 3 (29). С. 154-161.
Batty M. Digital twins // Environment and Planning B: Urban Analytics and City Science. 2018. № 45 (5). P. 817-820.
Boschert S., Rosen R. Digital Twin - The Simulation Aspect // Mechatronic Futures. Springer, 2016. P. 59-74. DOI: 10.1007/978-3-319-32156-1_5.
Cimino C., Negri E., Fumagalli L. Review of digital twin applications in manufacturing // Computers in Industry. 2019. № 113. P. 103-130. DOI: 10.1016/j.compind.2019.103130.
Habe H., Li B., Weissenberg N., Cirullies J., Otto B. Digital twin for real-time data processing in logistics // Hamburg International Conference of Logistics (HICL). 2019. № 27. P. 3-28. DOI: 10.15480/882.2462.
Josifovska K., Yigitbas E., Engels G. Reference Framework for Digital Twins within Cyber-Physical Systems // IEEE / ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). 2019. P. 25-31. DOI: 10.1109/SEsCPS.2019.00012.
Halenar I., Juhas M., Juhasova B., Borkin D. Virtualization of Production Using Digital Twin Technology // 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 2019. P. 1-5. DOI: 10.1109/CarpathianCC.2019.8765940.
Otto B., Hompel M., Wrobel S. International Data Spaces: Reference architecture for the digitization of industries // Digital Transformation. Springer, 2019. P. 109-128. DOI: 10.1007/978-3-662-58134-6_8.
Aliyev Z. Spatial data interpolation // International Journal of Medical and Biomedical Studies. 2018. № 2. P. 7-10. DOI: 10.32553/ijmbs.v2i4.36.
Albarghouthi A., Berdine J., Cook B., Kincaid Z. Spatial Interpolants // ESOP 2015: Programming Languages and Systems. 2015. P. 634-660. DOI: 10.1007/978-3-662-46669-8_26.
Negri E., Fumagalli L., Macchi M. A review of the roles of Digital Twin in CPS-based production // Procedia Manufacturing. 2017. V. 11. P. 939-948.
Воробьев А.В., Воробьева Г.Р. Подход к оценке относительной информационной эффективности магнитных обсерваторий сети INTERMAGNET // Геомагнетизм и аэрономия. 2018. № 58. С. 648-652. DOI: 10.1134/S0016794018050164.
Воробьева Г.Р., Воробьев А.В. Подход к повышению производительности программных процессов обработки и хранения больших объемов геомагнитных данных // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2020. № 50. С. 23-30.
Abbasova, T.S. (2019) The development of virtual tools for creating digital doubles. Informatsionno-tekhnologicheskiy vestnik - Information Technology Bulletin. 2(20). pp. 79-88.
Stark, R., Fresemann, C. & Lindow, K. (2019) Development and operation of Digital Twins for technical systems and services. CIRPAnnals. 68. pp. 129-132. DOI: 10.1016/j.cirp.2019.04.024
Alam, K.M. & El Saddik, A. (2017) C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems. IEEE Access. pp. 2050-2062. DOI: 10.1109/ACCESS
Grieves, M. & Vickers, J. (2017) Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: Kahlen, F.-J., Flumerfelt, S. & Alves, A. (eds) Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Cham, Switzerland: Springer International Publishing. pp. 85-113.
Bakhvalov, Yu. & Kopylov, I. (2015) Training and assessment the generalization ability of interpolation methods. Computer Research and Modeling. 7. pp. 1023-1031. DOI: 10.20537/2076-7633-2015-7-5-1023-1031
Kovalev, S.P. (2020) Information architecture of the power system digital twin. Sistemy i sredstva inform - Systems and Means of Informatics. 30(1). pp. 66-81. DOI: 10.14357/08696527200106
Dmitriev, V.M. & Gandzha, T.V. (2013) Principle of formation of multilevel com puter models of SCADA-systems for the control of complex technological objects. Informatika i sistemy upravleniya. 2(36). pp. 24-36.
Dmitriev, V.M., Gandzha, T.V. & Panov, S.A. (2016) VIP. The system of virtual instruments and devices for education and scien tific experiment automation. Programmnye produkty i sistemy - Software and Systems. 3(29). pp. 154-161. DOI: 10.15827/0236-235X.115.154-162
Batty, M. (2018) Digital twins. Environment and Planning B. Urban Analytics and City Science. 45(5). pp. 817-820. DOI: 10.1177/2399808318796416
Boschert, S. & Rosen, R. (2016) Digital Twin-The Simulation Aspect. Mechatronic Futures. pp. 59-74. DOI: 10.1007/978-3-319-32156-1_5
Cimino, C., Negri, E. & Fumagalli, L. (2019) Review of digital twin applications in manufacturing. Computers in Industry. 113. pp. 103-130. DOI: 10.1016/j.compind.2019.103130
Habe, H., Li, B., Weissenberg, N., Cirullies, J. & Otto, B. (2019) Digital twin for real-time data processing in logistics. Hamburg International Conference of Logistics (HICL). 27. pp. 3-28. DOI: 10.15480/882.2462
Josifovska, K., Yigitbas, E. & Engels, G. (2019) Reference Framework for Digital Twins within Cyber-Physical Systems. IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). pp. 25-31. DOI: 10.1109/SEsCPS.2019.00012
Halenar, I., Juhas, M., Juhasova, B. & Borkin D. (2019) Virtualization of Production Using Digital Twin Technology. 20th International Carpathian Control Conference (ICCC). Krakow-Wieliczka, Poland. pp. 1-5. DOI: 10.1109/CarpathianCC.2019.8765940
Otto, B., Hompel, M. & Wrobel, S. (2019) International Data Spaces: Reference architecture for the digitization of industries. Digital Transformation. pp. 109-128. DOI: 10.1007/978-3-662-58134-6_8
Aliyev, Z. (2018) Spatial data interpolation. International Journal of Medical and Biomedical Studies. 2. pp. 7-10. DOI: 10.32553/ijmbs.v2i4.36
Albarghouthi, A., Berdine, J., Cook, B. & Kincaid, Z. (2015) Spatial Interpolants. ESOP 2015: Programming Languages and Systems. pp. 634-660. DOI: 10.1007/978-3-662-46669-8_26
Negri, E., Fumagalli, L. & Macchi, M. (2017) A review of the roles of Digital Twin in CPS-based production. Procedia Manufacturing. 11. pp. 939-948.
Vorobev, A.V. & Vorobeva, G.R. (2018) Podkhod k otsenke otnositel'noy informatsionnoy effektivnosti magnitnykh observato-riy seti INTERMAGNET [An approach to assessing the relative information efficiency of magnetic observatories in the INTERMAGNET network]. Geomagnetizm i aeronomiya - Geomagnetism and aeronomy. 58. pp. 648-652.
Vorobeva, G.R. & Vorobev, A.V. (2020) Approach to improving the performance of software processes for processing and storing large volumes of geomagnetic data. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychis-litel'naya tekhnika i informatika - Tomsk State University Journal of Control and Computer Science. 50. pp. 23-30. DOI: 10.17223/19988605/50/3
 The concept of a multi-level system of digital twins (on the example of geomagnetic data) | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 55. DOI: 10.17223/19988605/55/4

The concept of a multi-level system of digital twins (on the example of geomagnetic data) | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 55. DOI: 10.17223/19988605/55/4

Download full-text version
Counter downloads: 251