Clustering of homogeneous production facilities based on the analysis of technological data in the formation of aluminum alloys
The continuous development of the metallurgical industry, including the current trend of improving the technological process of forming aluminum alloys, determines the need for additional research work aimed at obtaining safe and effective methods for modernizing existing technological measures for the production of aluminum alloys, considering specific requirements for their chemical composition. Modernization of the established modes of operation of the technological stages of the production process, as well as continuous monitoring of the main features of the technological operations in the manufacture of aluminum alloys, determines the achievement of new practical results in the production of modern high-quality materials with higher environmental and operational properties. All these factors directly increase the competitiveness of the industry in the world market of non-ferrous metals, increasing consumer demand for products of this kind. One of the available options for upgrading the current production cycle of aluminum alloy manufacturing is to improve the technological stage of forming aluminum melt in the melting mixer of the foundry department. In particular, it is proposed to optimize the established operating modes of production units and control actions. At the same time, there is a need to use mathematical tools designed to formalize the main features of the studied production facilities in order to continuously monitor dynamic changes in technological parameters. Proper processing of process data contributes to the application of classification cluster analysis of the existing set of casting buckets with raw aluminum based on the initial values of the concentrations of elements of the chemical composition. The cluster analysis provides an effective division of the available set of casting buckets with raw aluminum into appropriate clusters, including considering the established requirements for the selected brand of aluminum alloy according to the specifications of the order portfolio. This principle of cluster analysis, followed by software and algorithmic implementation of appropriate quality, especially with the use of a high-speed high-level programming language, will ensure the creation of a workable way to obtain the most correct options for allocating cluster sets of casting buckets for their subsequent layout and mixing. Thus, the use of cluster analysis is not only a convenient analytical tool for the study of a large array of technological data, reducing the complexity of the perception of a large amount of information about the production process by technological personnel, but also helps to reduce the number of unnecessary empirical options for incorrect layout of available casting buckets at optimal technical and economic costs.
Keywords
process data,
chemical composition,
cluster analysis,
metric,
Heaviside functionAuthors
Kalashnikov Sergey N. | Siberian State Industrial University | s.n.kalashnikov@yandex.ru |
Martusevich Efim A. | Siberian State Industrial University | program.pro666@yandex.ru |
Martusevich Elena V. | Siberian State Industrial University | science_nvkz@yandex.ru |
Rybenko Inna A. | Siberian State Industrial University | rybenkoi@mail.ru |
Всего: 4
References
Скуратов А.П., Шахрай С.Г., Фомичев И.В., Белянин А.В. Повышение экологической и энергетической эффективности производства алюминия // Исследование энергетической эффективности и экологических показателей оборудования алюминиевой промышленности. Красноярск : Сиб. фед. ун-т, 2018. 179 с.
Володькина А.А. Роль аналитических методов в металлургии алюминия // Молодежный вестник ИРГТУ. 2020. № 10 (1). С. 77-80.
Дмитрюк А.И., Григорьев А.А. Совершенствование технологии прессования алюминиевых заготовок // Заготовительные производства в машиностроении. 2020. Т. 18, № 8. C. 353-358.
Шестаков А.К., Садыков Р.М., Петров П.А. Состояние производства алюминия на начало 2020 года // Международный научно-исследовательский журнал. 2020. № 7-1 (97). С. 114-119.
Васечко Д.Ю. Конъюнктура мировых рынков меди и алюминия // Производство цветных металлов и сплавов. М. : Кабели и Провода, 2011. С. 10-12.
Александров А.В., Немчинова Н.В. Расчет ожидаемой экономической эффективности производства алюминия за счет увеличения применения глинозема отечественного производства // Вестник Иркутского государственного технического университета. 2020. Т. 24, № 2 (151). С. 408-420.
Хальцинова Ж., Требуна П. Методы кластерного анализа // Формирование экономического порядка. 2012. № 2 (30). С. 31-34.
Барышникова Н.А. Методика кластеризации на основе иерархических и неиерархических методов кластерного анализа // Вестник Таганрогского института управления и экономики. 2012. № 1 (15). С. 81-83.
Кельманов А.В. О сложности некоторых задач кластерного анализа // Журнал вычислительной математики и математиче ской физики. 2011. Т. 51, № 11. С. 2106-2112.
Тюрин А.Г., Зуев И.О. Кластерный анализ, методы и алгоритмы кластеризации // Вестник МГТУ МИРЭА. 2014. № 2 (3). С. 86-97.
Buhaienko Y., Globa L.S., Liashenko A., Grebinechenko M. Analysis of clustering algorithms for use in the universal data processing system // Открытые семантические технологии проектирования интеллектуальных систем. 2020. № 4. С. 101104.
Chikayama E. Decomposition of multivariate function using the Heaviside step function // SpringerPlus. 2014. № 3 (1). P. 1-11.
Skuratov, A.P., Shakhray, S.G., Fomichev, I.V. & Belyanin, A.V. (2018) Povyshenie ekologicheskoy i energeticheskoy effektivnosti proizvodstva alyuminiya [Improving the environmental and energy efficiency of aluminum production]. In: Issledovanie energeticheskoy effektivnosti i ekologicheskikh pokazateley oborudovaniya alyuminievoy promyshlennosti [Research of energy efficiency and environmental performance of equipment for the aluminum industry]. Krasnoyarsk: Siberian Federal University.
Volodkina, A.A. (2020) The role of analytical methods in aluminum metallurgy. Molodezhny Vestnik IrGTU- Young Researchers' Journal of ISTU. 10(1). pp. 77-80.
Dmitryuk, A.I. & Grigoriev, A.A. (2020) Enhancement of aluminum billets extrusion technology. Zagotovitel'nye proizvodstva v mashinostroenii. 18(8). pp. 353-358.
Shestakov, A.K., Sadykov, R.M. & Petrov, P.A. (2020) Sostoyanie proizvodstva alyuminiya na nachalo 2020 goda [The state of aluminum production at the beginning of 2020]. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal - International Research Journal. 7-1(97). pp. 114-119.
Vasechko, D.Yu. (2011) Kon"yunktura mirovykh rynkov medi i alyuminiya [The conjuncture of the world copper and aluminum markets]. In: Proizvodstvo tsvetnykh metallov i splavov [Production of non-ferrous metals and alloys]. Moscow: Kabeli i Provoda. pp. 10-12.
Aleksandrov, A.V. & Nemchinova, N.V. (2020) Calculation of the expected economic efficiency of aluminum production by increasing the use of domestic alumina. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta - Proceedings of Irkutsk State Technical University. 24 - 2(151). pp. 408-420. DOI: 10.21285/1814-3520-2020-2-408-420
Khaltsinova, J. & Trebuna, P. (2012) Cluster Analysis Method. Sever i Rynok. Formirovanie ekonomicheskogo poryadka - The North and the Market: Forming the Economic Order. 2(30). pp. 31-34.
Baryshnikova, N.A. (2012) Metodika klasterizatsii na osnove ierarkhicheskikh i neierarkhicheskikh metodov klasternogo analiza [Clustering technique based on hierarchical and non-hierarchical methods of cluster analysis]. Vestnik Taganrogskogo instituta upravleniya i ekonomiki - Bulletin of the Taganrog Institute of Management and Economics. 1(15). pp. 81-83.
Kelmanov, A.V. (2011) On the complexity of some cluster analysis problems. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki - Computational Mathematics and Mathematical Physics. 51(11). pp. 2106-2112.
Tyurin, A.G. & Zuev, I.O. (2014) Klasternyy analiz, metody i algoritmy klasterizatsii [Cluster analysis, methods and algorithms for clustering]. VestnikMGTUMIREA. 2(3). pp. 86-97.
Buhaienko, Y., Globa, L.S., Liashenko, A. & Grebinechenko, M. (2020) Analysis of clustering algorithms for use in the universal data processing system. Otkrytye semanticheskie tekhnologiiproektirovaniya intellektual'nykh sistem. 4. pp. 101-104.
Chikayama, E. (2014) Decomposition of multivariate function using the Heaviside step function. SpringerPlus. 3(1). pp. 1-11. DOI: 10.1186/2193-1801-3-704