Comparative analysis of scientometrics indicators of journals Math-Net.ru and elibrary.ru | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 56. DOI: 10.17223/19988605/56/12

Comparative analysis of scientometrics indicators of journals Math-Net.ru and elibrary.ru

The formal performance indicators of scientific activity, recognized by science governing bodies, directly or indirectly determine salaries, incentives, career advancement and grant opportunities for most scientists. Despite constant criticism against the governing bodies, it is they who approve these indicators, while other stakeholders (heads of institutes, universities and foundations, scientists themselves) are forced to agree with these indicators, and even adapt to them. In Russia and other countries, a family of impact factors is used as indicators. They are formed on the basis of data obtained from large online platforms that take into account mutual citation of papers. Moreover, most researchers dealing with this problem agree that assessments of the activities of organizations, scientific journals and scientists themselves, based on scientometric indicators, must be confirmed by expert evaluations. Note that the collective expert evaluation procedure itself is very complicated, often timeconsuming and costly, and is also subject to criticism. As a basis for expert evaluation of official indicators, this paper proposes the use of existing Internet platforms, informally and voluntarily uniting scientists in a specific field of knowledge and possessing a sufficiently large amount of information on papers and citations on a given topic. If we have official performance indicators of scientific activities and a certain Internet platform, then the main question becomes, can such platform serve as a means for verifying indicators recognized by science governing bodies? This approach is demonstrated by comparing the indicators of scientific journals in the field of mathematics and some areas of its application. The Science Index and the average score based on public examination conducted by scientific e-library eLIBRARY.RU served as official indicators. The features of All-Russian mathematical portal Math-Net.Ru were used to form an expert assessment. It is shown that Math-Net.Ru journals make up a significant part of mathematics journals in eLIBRARY.RU. Moreover, many Math-Net.Ru journals have such important properties as absence of monopolization of articles and references in Math-Net.Ru, which is behind the high reputation of this online resource. For the constructed citation graph of Math-Net.Ru journals, indicators such as Page Rank and eigenvector centrality, measuring the significance of vertices, corresponding to the journals in the graph, were calculated. Further, Spearman's rank correlation coefficient was used to analyze the correlation between Math-Net.Ru indicators and eLIBRARY.RU indicators. It showed that Page Rank in Math-Net.Ru has a strong positive statistical correlation with the average score obtained from public examination conducted by eLIBRARY.RU. The outcome of the research suggests that the use of data obtained from mathematical portal Math-Net.Ru allows to determine (from several eLIBRARY.RU rankings) such an assessment that best matches the significance indicators in Math-Net.Ru, thereby providing an instrumental justification for such eLIBRARY.RU ranking.

Download file
Counter downloads: 76

Keywords

scientometrics, journal citation graph, rating indicators, Spearman ranked correlation

Authors

NameOrganizationE-mail
Pechnikov Andrey A.Karelian Research Center of the Russian Academy of Sciencespechnikov@krc.karelia.ru
Всего: 1

References

Рубинштейн А.Я., Слуцкин Л.Н. «Multiway data analysis» и общая задача ранжирования журналов // Прикладная эконо метрика. 2018. Т. 50. С. 90-113.
Новиков Д.А. Померяемся «Хиршами»? (размышления о наукометрии) // Высшее образование в России. 2015. № 2. С. 5-13.
Третьякова О.В. К вопросу об импакт-факторе научного журнала и методиках его формирования // Вопросы территориаль ного развития. 2014. № 5 (15). URL: http://vtr.isert-ran.ru/article/1412
Мельникова Е.В. Современное состояние системы индексации и цитирования Web of Science: базы данных, индексы // Территория новых возможностей. Вестник Владивостокского государственного университета экономики и сервиса. 2018. Т. 10, № 1 (40). С. 93-101.
Рубинштейн А.Я. Ранжирование российских экономических журналов: научный метод или «игра в цыфирь»? // Журнал Новой экономической ассоциации. 2016. № 2 (30). С. 162-175.
Экспертная оценка качества российских научных журналов. URL: https://www.elibrary.ru/expert_titles_terms.asp (дата об ращения: 12.01.2021).
Chebukov D., Izaak A., Misyurina O., Pupyrev Yu., Zhizhchenko A. Math-Net.Ru as a digital archive of the Russian mathematical knowledge from the XIX century to today // Lecture Notes in Comput. Sci. 2013. V. 7961. Р. 344-348.
Hirschman A.O. The Paternity of an Index // Am. Econ. Rev. 1964. № 54 (5). Р. 761-762.
Методика расчета интегрального показателя научного журнала в рейтинге ScienceIndex. URL: elibrary.ru/help_title_rating.asp (дата обращения: 08.01.2021).
Chen D.Z., Lee Y.Y. Longitudinal analysis of mechanism and machine theory: Geospatial productivity, journal citation networks, and researcher communities // Journal of Mechanical Design. 2016. V. 138, № 3. DOI: 10.1115/1.4032397
Horizontal Merger Guidelines // U.S. Department of Justice and Federal Trade Commission. 2010. URL: www.ftc.gov/sites/default/files/attachments/merger-review/100819hmg.pdf (accessed: 08.01.2021).
Коцофана Т.В., Стажкова П.С. Сравнительный анализ применения показателей концентрации на примере банковского сектора РФ // Вестник СПбГУ. Сер. 5. Экономика. 2011. № 4. С. 30-40.
Heneberg P. From Excessive Journal Self-Cites to Citation Stacking: Analysis of Journal Self-Citation Kinetics in Search for Journals, Which Boost Their Scientometric Indicators // PLoS ONE. 2016. № 11 (4). e0153730. DOI: 10.1371/journal.pone.0153730
Бредихин С.В., Ляпунов В.М., Щербакова Н.Г. Структура сети цитирования научных журналов // Проблемы информатики. 2017. № 2 (35). С. 38-52.
Newman M.E.J. Power laws, Pareto distributions and Zipfs law // Contemporary Physics. 2005. V. 46, № 5. Р. 323-351.
Barabasi L.-A., Albert R., Jeong H. Scale-free characteristics of random networks: the topology of the world-wide web // Physica. 2000. V. A281. Р. 69-77.
Brin S., Page L. The Anatomy of a Large-Scale Hypertextual Web Search Engine // Computer Networks and ISDN Systems. 1998. № 30. Р. 107-117.
Щербакова Н.Г. Аксиоматика центральности в комплексных сетях // Проблемы информатики. 2015. № 3 (28). С. 3-14.
Айвазян С.А., Мхитарян В.С. Теория вероятностей и прикладная статистика. 2-е изд. М. : Юнити, 2001. 656 с.
Critical Values of the Spearman’s Ranked Correlation Coefficient. URL: ru.scribd.com/document/392256411/TABEL-RANK-SPEARMAN-spearman-ranked-correlation-table-docx (accessed: 11.01.2021).
 Comparative analysis of scientometrics indicators of journals Math-Net.ru and elibrary.ru | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 56. DOI: 10.17223/19988605/56/12

Comparative analysis of scientometrics indicators of journals Math-Net.ru and elibrary.ru | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2021. № 56. DOI: 10.17223/19988605/56/12

Download full-text version
Counter downloads: 202