The probabilistic model of sharing system with collisions, H-persistence and rejections data processing | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 58. DOI: 10.17223/19988605/58/4

The probabilistic model of sharing system with collisions, H-persistence and rejections data processing

A queuing system with repeated calls, one server, collisions (conflicts) of calls, /-persistence and rejections is considered. The input flow of calls is the Poisson process with an intensity o. A call that found the device free occupies it, and service begins, which ends successfully if no other requests were received during it. If the server is busy, then a conflict (collision) arises between the call that has come for service and the ones being serviced, and in the general case, both calls instantly go to the orbit and repeat the attempt to successfully serve after a random time. In this article, in the event of a collision, one of the calls, for example, which was in service (on the device), goes into orbit with probability 1, the other goes into orbit with probability H, and with probability (1-H) refuses service and leaves the system. We have two types of arriving calls: primary and repeated. Primary calls are calls received from the outside into the system; repeated calls are calls in the orbit after the collision and making a repeated attempt to occupy the device for servicing. When building models with repeated calls, it is usually assumed that the arrival of primary calls obeys Poisson's law. Nevertheless, this does not mean that the incoming flow of calls in the analyzed system is Poisson, we are talking only about the flow of primary calls. The total incoming arrival flow consists of a Poisson flow of primary calls and a flow of repeated calls. The service time of a primary or repeated claim does not depend on its type and has an exponential distribution with the parameter li. and one unit of line resource is used to service requests. The random delay that a call carries out in orbit is exponentially distributed with the parameter g. The problem is to find the probabilities distribution of the calls number in the orbit. We write the Kolmogorov differential equations system for the stationary regime and then construct a recurrent algorithm to solve it. The numerical results obtained with recurrent algorithm made it possible to conclude that with a decrease in the random delay, which is carried out by a call in orbit under a conflict, the distribution of the number of calls in the orbit has the form of a Gaussian. The technical characteristics of the system, which are of practical importance for its design, are found.

Download file
Counter downloads: 43

Keywords

retrial queueing system, collisions, rejections, H-persistence, recurrent algorithm

Authors

NameOrganizationE-mail
Polkhovskaya Anna V.National Research Tomsk State Universityanya.polxovskaya00@mail.ru
Danilyuk Elena Y.National Research Tomsk State Universitydaniluc.elena.yu@gmail.com
Moiseeva Svetlana P.National Research Tomsk State Universitysmoiseeva@mail.ru
Bobkova Olga S.National Research Tomsk State Universityosia153@yandex.ru
Всего: 4

References

Artalejo J.R., Gomez-Corral A. Retrial Queueing Systems: a Computational Approach. Berlin : Springer-Verlag, 2008. 318 p.
Wilkinson R.I. Theories for toll traffic engineering in the USA // The Bell Syst. Techn. J. 1956. V. 35, № 2. P. 421-507.
Cohen J.W. Basic problems of telephone traffic and the influence of repeated calls // Philips Telecommun. Rev. 1957. V. 18, № 2. P. 49-100.
Gosztony G. Repeated call attempts and their effect on traffic engineering // Budavox Telecommun. Rev. 1976. V. 2. P. 16-26.
Falin G.I., Templeton J.G.C. Retrial queues. London : Chapman & Hall, 1997. 320 p.
Artalejo J.R. Numerical calculation of the stationary distribution of the main multiserver retrial queue // Ann. Oper. Res. 2002. № 116. P. 41-56.
Neuts M.F., Rao B.M. Numerical investigation of a multiserver retrial model // Queueing Syst. 1990. V. 7, № 2. P. 169-189.
Dudin A.N., Klimenok V.I., Vishnevsky V.M. The Theory of Queuing Systems with Correlated Flows. Cham : Springer International Publishing, 2020. 410 p. DOI: 10.1007/978-3-030-32072-0
Krishna Kumar B., Vijayalakshmi G., Krishnamoorthy A., Sadiq Basha S. A single server feedback retrial queue with collisions // Computer and operations research. 2010. № 37. P. 1247-1255. DOI: 10.1016/j.cor.2009.04.019
Lakaour L., Aissani D., Adel-Aissanou K. M/M/1 Retrial Queue with Collisions and Transmission Errors // Methodol.Comput. Appl. Probab. 2019. V. 21. P. 1395-1406. DOI: 10.1007/s11009-018-9680
Aguir M.S., Aksin O.Z., Karaesmen F., Dallery Y. On the interaction between retrials and sizing of call centers // European Journal of Operational Research. 2008. V. 191, № 2. Р. 398-408.
Gomez-Corral A. On the applicability of the number of collisions in p-persistent CSMA/CD protocols // Computers & Operations Research. 2010. V. 37, № 7. P. 1199-1211.
Artalejo J.R., Pla V. On the impact of customer balking, impatience and retrials in telecommunication systems // Computers and Mathematics with Applications. 2009. V 57, № 2. P. 217-229.
Choi B.D., Shin Y.W., Ahn W.C. Retrial queues with collision arising from unslotted CSMA/CD protocol // Queueing systems. 1992. V. 11, № 4. P. 335-356.
Хомичков И.И. Расчет характеристик локальной сети с p-настойчивым протоколом случайного множественного доступа // Автоматика и вычислительная техника. 1995. № 2. С. 67-80.
Назаров А.А., Судыко Е.А. Исследование марковской RQ-системы с конфликтами заявок и простейшим входящим потоком // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 3 (12). С. 97-106.
Назаров А.А., Судыко Е.А. Условия существования стационарного режима в немарковских RQ-системах с конфликтами заявок // Известия Томского политехнического университета. Управление, вычислительная техника и информатика. 2011. Т. 318, № 5. С. 166-168.
Kim J. Retrial queueing system with collision and impatience // Commun. Korean Math. Soc. 2010. № 4. P. 647-653.
Wang K., Li N., Jiang Z. Queueing system with impatient customers: A review // Service Operations and Logistics, and Informatics: Proc. of 2010 IEEE International Conference. 2010. P. 82-87. DOI: 10.1109/SOLI.2010.5551611
Kim C.S., Dudin S., Taramin O., Baek J. Queueing system MMAP/PH/N/N + R with impatient heterogeneous customers as a model of call center // App. Math. Model. 2013. V. 37, № 3. P. 958-976.
Danilyuk E.Y., Fedorova E.A., Moiseeva S.P. Asymptotic Analysis of an Retrial Queueing System M|M|1 with Collisions and Impatient Calls // Automation and Remote Control. 2018. V. 79, № 12. P. 2136-2146.
Nazarov A., Sztrik J., Kvach A. et al. Asymptotic analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs // Annals of Operations Research. 2019. V. 277. P. 213-229.
Danilyuk E., Moiseeva S., Nazarov A. Asymptotic Analysis of Retrial Queueing System M/GI/1 with Collisions and Impatient Calls // Communications in Computer and Information Science. 2019. V. 1109. P. 230-242.
Danilyuk E.Yu., Moiseeva S.P., Sztrik Ja. Asymptotic Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Server // Journal of Siberian Federal Universit. Mathematics and Physics. 2020. V. 13, № 2. P. 218230.
Fedorova E., Danilyuk E., Nazarov A., Melikov A. Retrial Queueing System MMPP/M/1 with Impatient Calls under Heavy Load Condition // Lecture Notes in Computer Science. 2019. V. 11688 LNCS. P. 3-15.
Danilyuk E., Vygoskaya O., Moiseeva S. Retrial Queue M/M/N with Impatient Customer in the Orbit // Distributed Computer and Communication Networks. 2018. V. 919. P. 493-504.
Степанов С.Н. Теория телетрафика: концепции, модели, приложения. М. : Горячая линия-Телеком, 2015. 867 с.
 The probabilistic model of sharing system with collisions, H-persistence and rejections data processing | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 58. DOI: 10.17223/19988605/58/4

The probabilistic model of sharing system with collisions, H-persistence and rejections data processing | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 58. DOI: 10.17223/19988605/58/4

Download full-text version
Counter downloads: 375