Asymptotical analysis of queueing system MMPP|M|N with feedback | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 58. DOI: 10.17223/19988605/58/5

Asymptotical analysis of queueing system MMPP|M|N with feedback

Let us consider a queueing system MMPP|M|N with two types of feedback. Customer, entering the system in accordance with the MMPP flow, is sent to the server if at least one of the N servers is idle, otherwise it goes into the orbit, where it delays for a random time distributed exponentially with the parameter σ. Customer services during a random time exponentially distributed with the parameter μ; at the moment of service completion, customer may leave the system with probability r0; perform instantaneous feedback with probability r1 or perform delayed feedback with probability r2. The problem is to obtain the probability distribution of the process n(t) is the number of occupied servers in the system and process i(t) is the number of customers in the orbit. In Section 2, we write system of Kolmogorov differential equations for stationary probability distribution P k t k n t n i t i P k n i { ( ) , ( ) , ( ) } ( , , ) and a system of Kolmogorov differential equations is written in matrix form for a vector of partial characteristic functions. Section 3 contains an asymptotic analysis of the matrix equation for the vector of partial characteristic functions of the number of customers in the orbit. The main results of the research are the following theorems. Theorem 1. In the considered feedback system under asymptotic condition 0 asymptotic characteristic function of the normalized number it() of customers has the form lim { } , jw i t jw M e e where parameter κ is a positive root x of the scalar equation R B I e ( )( ) 0, x x - 0 where row-vector R { (0), (1),..., ( )} R R R N is probability distribution of number of occupied servers in the system, and is a solution of the system of equations { } ( ) ( ) 0 - - x R A B I I 0 1 , Re 1. Theorem 2. In the considered feedback system asymptotic characteristic function of centered and normalized number of customers in the orbit has the form 2 2 ( ) ( ( ) ) 2 0 lim { } ( ) , jw jw i t M e w e - where 2 ( ) , ( ) - - - 0 0 0 0 RI e g B I e RI e φ B I e row-vectors φ и g are solutions of the following systems of equations: φ A B I I R I I ( ( )) ( ), - - - 0 1 0 1 φe 0; ( ( )) ( ), - - - 0 1 1 g A B I I R I B ge 0. Section 4 presents the results of a numerical experiment, performing its accuracy and area of applicability of the proposed asymptotic method comparing with the results of simulation.

Download file
Counter downloads: 52

Keywords

multi-channel queueing system, orbit, instantaneous feedback, delayed feedback, asymptotic analysis

Authors

NameOrganizationE-mail
Nazarov Anatoly A.National Research Tomsk State Universitynazarov.tsu@gmail.com
Pavlova Ekaterina A.National Research Tomsk State Universitypavlovakatya_2010@mail.ru
Всего: 2

References

Takacs L. A single-server queue with feedback // Bell System Technical Journal. 1963. V. 42. P. 505-519.
Takacs L. A queuing model with feedback // Operations Research. 1977. V. 11. P. 345-354.
Назаров А.А., Моисеева С.П., Морозова А.С. Исследования СМО с повторным обслуживанием и неограниченным чис лом обслуживающих приборов методом предельной декомпозиции // Вычислительные технологии. 2008. Т. 13, вып. 5. С. 88-92.
Моисеева С.П., Захорольная И.А. Математическая модель параллельного обслуживания кратных заявок с повторными обращениями // Автометрия. Т. 47, вып. 6. С. 51-58.
Dudin A.N., Kazimirsky A.V., Klimenok V.I., Breuer L., Krieger U. The queuing model MAP/PH/1/N with feedback operating in a Markovian random environment // Austrian Journal of Statistics. 2005. V. 34, is. 2. P. 101-110.
Wortman M.A., Disney R.L., Kiessler P.C. The M/GI/1 Bernoulli feedback queue with vacations // Queueing Systems. 1991. V. 9, is. 4. P. 353-363.
D'Avignon G.R., Disney R.L. Queues with instantaneous feedback // Management Sciences. 1997. V. 24, is. 2. P. 168-180.
Berg J.L., Boxma O.J. The M/G/1 queue with processor sharing and its relation to feedback queue // Queueing Systems. 1991. V. 9, is. 4. P. 365-402.
Hunter J.J. Sojourn time problems in feedback queue // Queueing Systems. 1989. V. 5, is. 1-3. P. 55-76.
Melikov A.Z., Zadiranova A., Moiseev A. Two asymptotic conditions in queue with MMPP arrivals and feedback // Communications in Computer and Information Science. 2016. V. 678. P. 231-240.
Pekoz E.A., Joglekar N. Poisson traffic flow in a general feedback // Journal of Applied Probability. 2002. V. 39, is. 3. P. 630636.
Lee H.W., Seo D.W. Design of a production system with feedback buffer // Queueing Systems. 1997. V. 26, is. 1. P. 187-198.
Lee H.W., Ahn B.Y. Analysis of a production system with feedback buffer and general dispatching time // Mathematical Problems in Engineering. 2000. V. 5. P. 421-439.
Foley R.D., Disney R.L. Queues with delayed feedback // Advances in Applied Probability. 1983. V. 15, is. 1. P. 162-182.
Ayyapan G., Subramanian A.M.G., Sekar G. M/M/1 retrial queuing system with loss and feedback under non-pre-emptive priority service by matrix geometric method // Applied Mathematical Sciences. 2010. V. 4. P. 2379-2389.
Ayyapan G., Subramanian A.M.G., Sekar G. M/M/1 retrial queuing system with loss and feedback under pre-emptive priority service // International Journal of Computer Applications. 2010. V. 2. P. 27-34.
Bouchentouf A.A., Belarbi F. Performance evaluation of two Markovian retrial queuing model with balking and feedback // Acta Univ. Sapientiae. Mathematica. 2013. V. 5. P. 132-146.
Choi B.D., Kim Y.C., Lee Y.W. The M/M/c retrial queue with geometric loss and feedback // Computers and Mathematics with Applications. 1998. V. 36. P. 41-52.
Krishna Kumar B., Rukmani R., Thangaraj V. On multiserver feedback retrial queue with finite buffer // Applied Mathematical Modeling. 2009. V. 33. P. 2062-2083.
Do T.V. An efficient computation algorithm for a multiserver feedback retrial queue with a large queuing capacity // Applied Mathematical Modeling. 2010. V. 34. P. 2272-2278.
Mokaddis G.S., Metwally S.A., Zaki B.M. A feedback retrial queuing system with starting failures and single vacation // Tamkang Journal of Science and Engineering. 2007. V. 10. P. 183-192.
Melikov A.Z., Ponomarenko L.A., Rustamov A.M. Methods for analysis of queuing models with instantaneous and delayed feedbacks // Communications in Computer and Information sciences. 2015. V. 564. P. 185-199.
Koroliuk V.S., Melikov A.Z., Ponomarenko L.A., Rustamov A.M. Methods for analysis of multi-channel queuing models with instantaneous and delayed feedbacks // Cybernetics and System Analysis. 2016. V. 52, is. 1. P. 58-70.
Melikov A.Z., Ponomarenko L.A., Rustamov A.M. Hierarchical space merging algorithm to analysis of open tandem queuing networks // Cybernetics and System Analysis. 2016. V. 52, is. 6. P. 867-877.
Melikov A.Z., Aliyeva S.H. Refined approximate algorithm for steady-state probabilities of the large-scale queuing systems with instantaneous and delayed feedbacks // Communications in Computer and Information sciences. 2019. V. 1109. P. 188-201.
Sztrik J., Efrosinin D. Tool supported reliability analysis of finite-source retrial queues // Automation and Remote Control. 2010. V. 71. P. 1388-1393.
Berczes T., Sztrik J., Toth A., Nazarov A.A. Performance modeling of finite-source retrial queueing systems with collisions and non-reliable server using MOSEL // Communications in Computer and Information Science. 2017. V. 700. P. 248-258.
Neuts M.F. Matrix-geometric solutions in stochastic models: An algorithmic approach. Baltimore : John Hopkins University Press, 1981. 332 р.
Mitrani I., Chakka R. Spectral expansion solution for a class of Markov models: application and comparison with the matrixgeometric method // Performance Evaluation. 1995. V. 23. P. 241-260.
 Asymptotical analysis of queueing system MMPP|M|N with feedback | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 58. DOI: 10.17223/19988605/58/5

Asymptotical analysis of queueing system MMPP|M|N with feedback | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 58. DOI: 10.17223/19988605/58/5

Download full-text version
Counter downloads: 375