Error correction circuits structures based on Boolean complement with calculation checking by code with summation of weighted transitions from bit to bit
Methods for introducing modular redundancy are widely used in fault-tolerant digital devices and systems synthesis. Such methods involve the use of the original device's exact copies (analogues) and error correction circuits. There are structures based on the introduction of triple and double modular redundancy widespread and knowing. Research shows that fault-tolerant structures can be obtained without using modular redundancy techniques. At the same time, it is possible to achieve a decrease in the introduced hardware redundancy to endow the device with the property of fault tolerance concerning methods based on the introduction of modular redundancy. An effective technical solution is the use of the logical complement principle with the built-in control circuits organization, the diagnostics object, or a Boolean complement block in the fixing circuit of distorted signals. When organizing built-in control circuits using the Boolean complement method, it is possible to consider the structural features of the diagnosed object itself, and this makes it possible to reduce the structural redundancy relative to known methods. The article proposes standard structures of fault-tolerant devices based on the weight-transition sum code from bit to bit. Such a code is obtained by dividing the bits of the data vector into k = m - 1 pairs, starting with the least significant bit (pairs f1,/2), f2,/3), (fm-1, fm-2), (fm, fm-1)), are formed), assigning the pairs of weight coefficients from a series of increasing powers of the number 2 (20, 21, 2m-3, 2m-2), the subsequent addition of the weighting coefficients values of the digits pairs according to the formula W = z: ./ W-.i+iq/.i+i- where qi i+i = f © fM is the activating function the transition between the digits fi and fi+1. This code is designated as a Tm-code. It has k = m - 1 check bit, each of which is implemented as a convolution modulo M = 2 bits in the corresponding pair. In previous author research, it was proved that this code detects any errors in data vectors, except for errors with maximum multiplicity d = m. The noted property can be effectively used in the built-in control circuits synthesis, if exclude the diagnostic object faults influence immediately all its outputs, any combination of distortions can be detected. The use of the Tm-code in the built-in control circuits synthesis gives a decrease in the introduced structural redundancy with the duplication method use. This feature is proposed to be used in the synthesis of fault-tolerant devices. The paper proposes four typical fault-tolerant structures based on the use of the Tm-code. The 1st two structures are based on the use of the duplication with computations control principle by one of the devices. In the first case, the calculations at the outputs of the main block are controlled. In the second, the calculations at the outputs of the additional block are controlled. The differences between the structures are in the method of signal correction when fixing computational errors. The other two structures are based on the use of only one source device and the implementation of a special block for fixing distorted signals using the Boolean complement method. In the first case, the calculations by the main unit are controlled by the Tm-code, and the fixation of distortions is performed in fixing the distorted signals. In the second case, the calculations are controlled in the block for fixing the distorted signals. The use of Boolean complement makes it possible to synthesize many variants of blocks for fixing distorted signals, which makes it possible to choose the variant that gives the least introduced structural redundancy. The block for fixing the distorted bits includes a Boolean complement block and a block for calculating correction functions. In the second case, this block also includes a built-in Tm-code control circuit, which controls the calculations at the control logic block outputs. The task of synthesizing a block for fixing distorted bits is to synthesize a built-in control circuit, a block for calculating correction functions, and a Boolean complement block. The first two, as shown in the article, have a standard implementation. For the Boolean complement block synthesis, the article proposes two algorithms. An example of the synthesis of all four structures is given. The theoretical results are complemented by the results obtained in experiments with combinational benchmarks LG'93 and MCNC Benchmarks. The results show the effectiveness of the proposed structures in comparison with the known ones. The use of Boolean complement and code methods for the self-checking and fault-tolerant digital devices and systems synthesis makes it possible to expand the number of methods for their implementation and to minimize the structural redundancy indicators. The results obtained in the article should be taken into account in practice when choosing an approach to the synthesis of fault-tolerant digital devices and systems.
Keywords
fault-tolerant digital devices and systems,
modular redundancy,
built-in control circuit,
correction of signals,
checking of calculations,
code with summation of weighted transitions,
structural redundancyAuthors
Efanov Dmitry V. | Russian University of Transport; Peter the Great St. Petersburg Polytechnic University | tres-4b@yandex.ru |
Всего: 1
References
Щербаков Н.С. Самокорректирующиеся дискретные устройства. М. : Машиностроение, 1975. 216 с.
Согомонян Е.С., Слабаков Е.В. Самопроверяемые устройства и отказоустойчивые системы. М. : Радио и связь, 1989. 208 с.
Lala P.K. Self-Checking and Fault-Tolerant Digital Design. San Francisco : Morgan Kaufmann Publishers, 2001. 216 p.
Sogomonyan E.S. Self-Correction Fault-Tolerant Systems : Preprint. 2018, 30 p. URL: https://www.researchgate.net/publication/328355722_Self-Correction_Fault-Tolerant_Systems
Sellers F.F., Hsiao M.-Y., Bearnson L.W. Error Detecting Logic for Digital Computers. New York : McGraw-Hill, 1968, XXI + 295 p.
Гаврилов М.А., Остиану В.М., Потехин А.И. Надежность дискретных систем. М. : 1970. 104 с. (Итоги науки и техники. Сер. Теория вероятностей. Математическая статистика. Теоретическая кибернетика).
Сапожников В.В., Сапожников Вл.В., Христов Х.А., Гавзов Д.В. Методы построения безопасных микроэлектронных си стем железнодорожной автоматики / под ред. Вл.В. Сапожникова. М. : Транспорт, 1995. 272 с.
Matrosova A.Yu., Levin I., Ostanin S.A. Self-Checking Synchronous FSM Network Design with Low Overhead // VLSI Design. 2000. V. 11, is. 1. P. 47-58.
Cкляр В.В., Харченко В.С. Отказоустойчивые компьютерные системы управления с версионно-пороговой адаптацией: способы адаптации, оценка надежности, выбор архитектур // Автоматика и телемеханика. 2002. № 6. С. 131-145.
Останин С.А. Синтез отказоустойчивых комбинационных схем // Прикладная дискретная математика (приложение № 1). 2009. № 1. С. 71-72.
Hamamatsu M., Tsuchiya T., Kikuno T. Finding the Optimal Configuration of a Cascading TMR System // 14th IEEE Pacific Rim International Symposium on Dependable Computing, 15-17 December 2008, Taipei, Taiwan. P. 329-350.
Matsumoto K., Uehara M., Mori H. Evaluating the Fault Tolerance of Stateful TMR // 13th International Conference on Network-Based Information Systems, 14-16 September 2010, Takayama, Japan. P. 332-336.
Бочков К.А., Харлап С.Н., Сивко Б.В. Разработка отказоустойчивых систем на основе диверситетных базисов // Автоматика на транспорте. 2016. Т. 2, № 1. С. 47-64.
Стемпковский А.Л., Тельпухов Д.В., Жукова Т.Д., Гуров С.И., Соловьев Р.А. Методы синтеза сбоеустойчивых комбинационных КМОП схем, обеспечивающих автоматическое исправление ошибок // Известия ЮФУ. Технические науки. 2017. № 7 (192). С. 197-210.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Схема коррекции сигналов для комбинационных устройств автоматики на основе логического дополнения с контролем вычислений по паритету // Информатика. 2020. Т. 17, № 2. С. 71-85.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Отказоустойчивая структура на основе логического дополнения с контролем вычислений по паритету // Автоматика на транспорте. 2020. Т. 6, № 3. С. 377-403.
Гессель М., Морозов А.В., Сапожников В.В., Сапожников Вл.В. Логическое дополнение - новый метод контроля комбинационных схем // Автоматика и телемеханика. 2003. № 1. С. 167-i76.
Goessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking. Ed. 1. Dordrecht : Springer Science + Business Media B.V., 2008. i84 p.
Das D.K., Roy S.S., Dmitiriev A., Morozov A., Gossel M. Constraint Don't Cares for Optimizing Designs for Concurrent Checking by 1-out-of-3 Codes // Proc. of the 10th International Workshops on Boolean Problems, Freiberg, Germany, September, 2012. P. 33-40.
Saposhnikov Vl.V., Dmitriev A., Goessel M., Saposhnikov V.V. Self-Dual Parity Checking - a New Method for on Line Testing // Proc. of 14th IEEE VLSI Test Symposium. USA, Princeton, 1996. P. 162-168.
Efanov D., Sapozhnikov V., Sapozhnikov Vl., Osadchy G., Pivovarov D. Self-Dual Complement Method up to Constant-Weight Codes for Arrangement of Combinational Logical Circuits Concurrent Error-Detection Systems // Proc. of 17th IEEE East-West Design & Test Symposium (EWDTS'2019), Batumi, Georgia, September 13-16, 2019. P. 136-143.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В., Дмитриев В.В. Новые структуры систем функционального контроля логических схем // Автоматика и телемеханика. 2017. № 2. С. 127-143.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Коды с суммированием для систем технического диагностирования. М. : Наука, 2021. Т. 2: Взвешенные коды с суммированием. 455 с.
Sapozhnikov V., Sapozhnikov Vl., Efanov D. Typical Signal Correction Structures Based on Duplication with the Integrated Control Circuit // Proc. of 18th IEEE East-West Design & Test Symposium (EWDTS'2020), Varna, Bulgaria, September 4-7, 2020. P. 78-87.
Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Typical Structure of a Duplicate Error Correction Scheme with Code Control with Summation of Weighted Transitions // Electronic Modeling. 2020. V. 42, is. 5. P. 38-50.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Коды Хэмминга в системах функционального контроля логических устройств. СПб. : Наука, 2018. 151 с.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Коды с суммированием для систем технического диагностирования. М. : Наука, 2020. Т. 1: Классические коды Бергера и их модификации. 383 с.
Nikolos D. Self-Testing Embedded Two-Rail Checkers // Journal of Electronic Testing. 1998. V. 12. P. 69-79.
Сапожников В.В., Сапожников Вл.В., Ефанов Д.В. Основы теории надежности и технической диагностики. СПб. : Лань, 2019. 588 с.
Zakrevskij A., Pottosin Yu., Cheremisinova L. Optimization in Boolean Space. Tallinn : TUT Press, 2009. 241 p.
Sentovich E.M., Singh K.J., Moon C., Savoj H., Brayton R.K., Sangiovanni-Vincentelli A. Sequential Circuit Design Using Synthesis and Optimization // Proc. IEEE International Conference on Computer Design: VLSI in Computers & Processors, 1114 October 1992, Cambridge, MA, USA. P. 328-333.
SIS: A System for Sequential Circuit Synthesis / E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, A. Sangiovanni-Vincentelli / Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California. Berkeley, 1992. 45 p.
Collection of Digital Design Benchmarks. URL: http://ddd.fit.cvut.cz/www/prj/Benchmarks/
Сапожников Вл.В. Синтез систем управления движением поездов на железнодорожных станциях с исключением опасных отказов. М. : Наука, 2021. 230 с.
Drozd A., Kharchenko V., Antoshchuk S., Sulima J., Drozd M. Checkability of the Digital Components in Safety-Critical Systems: Problems and Solutions // Proc. of 9th IEEE East-West Design & Test Symposium (EWDTS'2011). Sevastopol, 2011. P. 411-416.
Drozd A., Drozd M., Martynyuk O., Kuznietsov M. Improving of a Circuit Checkability and Trustworthiness of Data Processing Results in LUT-based FPGA Components of Safety-Related Systems // CEUR Workshop Proc. 2017. Vol. 1844. P. 654-661. URL: http://ceur-ws.org/Vol-1844/10000654.pdf
Drozd O., Perebeinos I., Martynyuk O., Zashcholkin K., Ivanova O., Drozd M. Hidden Fault Analysis of FPGA Projects for Critical Applications // Proc. of the IEEE International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020, 25-29 February, Lviv-Slavsko, Ukraine. Paper 142.
Литиков И.П., Согомонян Е.С. Тестово-функциональное диагностирование цифровых устройств и систем // Автоматика и телемеханика. 1985. № 3. С. 111-121.