Non-asymptotic Confidence Estimation of the Autoregressive Parameter in AR(1) Process by Noisy Observations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 59. DOI: 10.17223/19988605/59/9

Non-asymptotic Confidence Estimation of the Autoregressive Parameter in AR(1) Process by Noisy Observations

For parameter in an AR(1) process corrupted by noise, the paper proposes the construction of confidence interval for unknown parameter with a prescribed coverage probability. The noises both in observable and in unobservable processes are assumed to be Gaussian with unknown variance. The estimation procedure is nonasymptotic and uses a special stopping rule. The results of numerical simulation by Monte-Carlo method are presented. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 28

Keywords

autoregressive process, non-asymptotic estimation, confidence interval

Authors

NameOrganizationE-mail
Vorobeychikov Sergey E.Tomsk State Universitysev@mail.tsu.ru
Pupkov Andrey V.Tomsk State Universityandrewpupkov@gmail.com
Всего: 2

References

Lai, T.L. & Wei, C.Z. (1983) Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters. Journal of Multivariate Analysis. 13. pp. 1-23. DOI: 10.1016/0047-259X(83)90002-7
Borisov, V.Z. & Konev, V.V. (1977) On sequential parameter estimation in discrete time processes. Automation and Remote Control. 38. pp. 1475-1480.
Lai, T.L. & Siegmund, D. (1983) Fixed accuracy estimation of an autoregressive parameter. Annals of Statistics. 11. pp. 478-485. DOI: 10.1214/aos/1176346154
Anderson, T.W. (1971) The Statistical Analysis of Time Series. New York: Wiley.
Hasan, Md.K., Chowdhury, A.K.M.Z.R. & Khan, M.R. (2003) Identification of autoregressive signals in colored noise using damped sinusoidal model. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 50. pp. 966969.
Mahmoudi, A., Karimi, M. & Amindavar, H. (2012) Parameter estimation of autoregressive signals in presence of colored AR(1) noise as a quadratic eigenvalue problem. Signal Processing. 92. pp. 1151-1156. DOI: 10.1016/j.sigpro.2011.11.015
Xia, Y. & Zheng, W.X. (2015) Novel parameter estimation of autoregressive signals in the presence of noise. Automatica. 62. pp. 98-105. DOI: 10.1016/j.automatica.2015.09.008
Vasiliev, V.A. & Konev, V.V. (1985) Sequential identification of parameters in dynamical systems in presence of multiplicative and additive noises. Automation and Remote Control. 46. pp. 706-716.
Stein, C. (1945) A Two-Sample test for a linear hypothesis' whose power is independent of the variance. Annals of Mathematical Statistics. 16. pp. 253-258. DOI: 10.1214/aoms/1177731088
Vorobeychikov, S. & Burkatovskaya, Yu. (2020) Non-asymptotic confidence estimation of the autoregressive parameter in AR(1) Process with an Unknown Noise Variance. Austrian Journal of Statistics. 49. pp. 19-26. DOI: 10.17713/ajs.v49i4.1121
Wei, C., Hao, Y. & Ching, K. (2018) Interval estimation for a first-order positive autoregressive process. Journal of Time Series Analysis. 39. pp. 1475-1480. DOI: 10.1111/jtsa.12297
Konev, V. & Pupkov, A. (2021) Confidence estimation of autoregressive parameters based on noisy data. Automation and Remote Control. 82. pp. 1030-1048. DOI: 10.1134/S0005117921060059
 Non-asymptotic Confidence Estimation of the Autoregressive Parameter in AR(1) Process by Noisy Observations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 59. DOI: 10.17223/19988605/59/9

Non-asymptotic Confidence Estimation of the Autoregressive Parameter in AR(1) Process by Noisy Observations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 59. DOI: 10.17223/19988605/59/9

Download full-text version
Counter downloads: 182