Multicriteria analysis of statistical stability of system characteristics of information and telecommunication channels | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 60. DOI: 10.17223/19988605/60/7

Multicriteria analysis of statistical stability of system characteristics of information and telecommunication channels

The basis of the approach to the study of the system statistical stability of the characteristics of models of information and telecommunication channels (states and residence time in a stable state) based on the algorithm of phase enlargement and the Semimarkov model is considered. A metric of the system multidimensional stability of models is proposed. The set of stability indicators forms the metric of the polymodel complex (system multidimensional stability), which made it possible to fully assess the quality of information channel models. Some properties of system multidimensional stability are investigated and a metric of statistical system multidimensional volatility is proposed. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 25

Keywords

system statistical stability, phase aggregation of states, information and telecommunication channels, residence time in states, semi-Martian model, multimodeling

Authors

NameOrganizationE-mail
Dronina Yulia V.Sevastopol State Universityapksev@yandex.ru
Skatkov Alexander V.Sevastopol State Universityvm1945@mail.ru
Всего: 2

References

Lin T.Y., Goyal P., Girshick R., He K., Dollar P. Focal loss for dense object detection // Proc. of the EEE international conference on computer vision. 2017. P. 2980-2988.
Мальцев Г.Н., Евтеев А.В. Устойчивость слежения за задержкой фазоманипулированных сигналов с расширением спектра в системах синхронизации радиотехнических систем // Информатика и автоматизация. 2021. № 20 (1). С. 16-42.
Gordon L.A., Loeb M.P., Lucyshyn W., Richardson R. CSI/FBI Computer Crime and Security Survey. San Francisco, CA : Computer Security Institute, 2005. 26 p. (Computer Security Institute Publications).
Zander S., Armitage G., Branch P. A Survey of Covert Channels and Countermeasures in Computer Network Protocols accepted for publication // IEEE Commun. Surveys and Tutorials. 2007. V. 9, № 3. P. 44-57.
Браницкий А.А., Котенко И.В. Анализ и классификация методов обнаружения сетевых атак // Труды СПИИРАН. 2016. Т. 45. С. 207-244.
Королюк В.С. Стохастические модели систем. Киев : Наукова думка, 1989. 208 с.
Obzherin Yu.E., Boyko E.G. Semi-Markov Models. Control of Restorable Systems with Latent Failures. London : Elsevier Academic Press, 2015. 214 p.
Zegzhda P.D., Kort S.S., Suprun A.F. Detection of anomalies in behavior of the software with usage of markov chains // Automatic Control and Computer Sciences. 2015. V. 49, № 8. P. 820-825.
Доронина Ю.В., Скатков А.В. Анализ статистической устойчивости стационарных марковских моделей // Труды СПИИРАН. 2019. № 5 (18). С. 1119-1148.
Микони С.В., Соколов Б.В., Юсупов Р.М. Квалиметрия моделей и полимодельных комплексов. М. : РАН, 2018. 314 с.
Sokolov B.V., Yusupov R.M. Information Fusion Models ’Quality Estimation and Models’ Quality Control Theory // VI ISTC Scientific Advisory Committee Seminar “Science and Computing”, Moscow, Russia, September 15-17 2003 : Abstracts. Moscow, 2003. P. 102-104.
Park K. Fundamentals of Probability and Stochastic Processes with Applications to Communications. New York : Springer, 2018. 273 p.
Мусаев А.А., Скворцов М.С. Методы параметрической оптимизации надежности структурно-сложных технических систем // Труды СПИИРАН. 2008. № 6. C. 44-50.
Дорф Р., Бишоп Р. Современные системы управления. М. : Лаборатория Базовых Знаний, 2006. 832 с.
Sharma M., Gandhi S.Compression and Encryption: an Integrated Approach // International Journal of Engineering Research & Technology (IJERT). 2012. V. 1, is. 5. Art. 235.
Kushner H.J., Yin G. Stochastic Approximation Algorithms and Applications. Berlin ; New York : Springer-Verlag, 2003. xxii, 474 р.
Kutoyants Yu.A. Identification of Dynamical Systems with Small Noise. Dordrecht : Kluwer, 1994. 301 p.
Herniter M.E.Introduction to Model-Based System Design // Rose Hulman Institute of Technology. 2010. URL: http://wiki.ece.rosehulman.edu/herniter/images/8/8d/MBSD1_Lecture_Notes_Complete_Winter09-10.pdf (accessed: 20.06.2021).
Ростовцев Ю.Г., Юсупов Р.М. Проблема обеспечения адекватности субъектно-объектного моделирования // Известия вузов. Приборостроение. 1991. № 7. С. 7-14.
Okhtilev M.Yu., Gnidenko A.S., Alferov V.V., Salukhov V.I., Nazarov D.I. Methods and Algorithms of Integrated Modeling of Complex Technical Objects in Dynamically Changing Conditions // Proc. of the International Scientific Conference ММЕТ NW. 2018. P. 282-284.
Sokolov B., Kovalev A., Kalinin V., Minakov E., Petrovskiy D. Logic Dynamic Model and Algorithms of Operation Complex // European Modeling & Simulation Symposium (EMSS-2018). 2018. P. 59-67.
Li Y.-F., Zio E. A multi-state model for the reliability assessment of a distributed generation system via universal generating function // Reliability Engineering and System Safety. 2012. V. 106. P. 28-36.
Panella I., Hardwick G. Model Oriented System Design Applied to Commercial Aircraft Secondary Flight Control Systems // International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2017 / M. Obaidat, T. Oren, F. Rango (eds.). Cham : Springer, 2019. P. 55-76. (Advances in Intelligent Systems and Computing, v. 873).
Laaksonen O., Peltoniemi M. The essence of dynamic capabilities and their measurement // International Journal of Management Reviews. British Academy of Management. 2018. V. 20, № 2. P. 184-205.
Garza-Reyes J.A., Romero J.T., Govindan K. et al. A PDCA-based approach to Environmental Value Stream Mapping (E-VSM) // Journal of Cleaner Production. 2018. V. 180. P. 335-348.
Кондрашков А.В., Пичугин Ю.А. Идентификация и статистическая проверка устойчивости модели Вольтерры // Научнотехнические ведомости СПбГПУ. Физико-математические науки. 2014. № 1 (189). С. 124-135.
Dolgui A., Ivanov D., Sokolov B. Scheduling of recovery action in supply chain with resilience analysis consideration // International Journal of Production Research. 2018. V. 56, № 19. P. 6473-6490.
Zhao Y., Liu Y., Jiang F., Liu X., Zhao D. Fast noisy image quality assessment based on free-energy principle // Communications in Computer and Information Science. 2018. V. 815. Р. 290-299.
Calandra R., Peters J., Deisenrothy M.P. Pareto Front Modeling for Sensitivity Analysis in Multi-Objective Bayesian Optimization. NIPS Workshop on Bayesian Optimization, 2014. 5 р. URL: http://www.ias.tu-darmstadt.de/uploads/Publications/Calandra-NIPS2015-bayesopt.pdf (accessed: 01.04.2022).
Hartikainen M., Miettinen K., Wiecek M.M. PAINT: Pareto front interpolation for nonlinear multiobjective optimization // Computational Optimization and Applications. 2012. V. 52, is. 3, P. 845-867.
Degiannakis S., Floros C. Methods of Volatility Estimation and Forecasting // Modelling and Forecasting High Frequency Financial Data. London : Palgrave Macmillan, 2015. P. 58-109.
Герасимова Д.С., Саяпин А.В., Палухин А. А., Кацура А.В. Bootstrap-метод для оценки статистических характеристик малых выборок авиационных агрегатов // Сибирский журнал науки и технологий. 2018. Т. 19, № 3. С. 482-488.
Gorban I.I. The Statistical Stability Phenomenon. Springer, 2017. 361 p. doi: 10.1007/978-3-319-43585-5
 Multicriteria analysis of statistical stability of system characteristics of information and telecommunication channels | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 60. DOI: 10.17223/19988605/60/7

Multicriteria analysis of statistical stability of system characteristics of information and telecommunication channels | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 60. DOI: 10.17223/19988605/60/7

Download full-text version
Counter downloads: 148