The method of eliminating the interfering parameter in the statistics of the Poisson flow of points | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2023. № 62. DOI: 10.17223/19988605/62/11

The method of eliminating the interfering parameter in the statistics of the Poisson flow of points

Comparison of the total number of registered tracks with the estimates of the number of tigers available in the literature showed the presence of significant differences in the territory of Primorsky Krai. To eliminate possible errors, the source data is represented by an inhomogeneous point Poisson flow. The problem of processing data on the calculation of the population density of the Amur tiger in the regions of Primorsky Krai is considered. The primary basis for this calculation was the author's sample of information on the registration of predator tracks in winter. The working method of trace accounting is modeled by the procedure of coloring flow points depending on the probability of trace detection. This probability becomes an interfering parameter, which is eliminated by replacing the number of traces with the proportion of traces in different areas. The theorem on the convergence of the fraction of traces to the limiting value is proved when the parameter of the Poisson distribution characterizing the total number of traces tends to infinity. The results obtained are illustrated by a map characterizing the estimated proportions of Amur tiger tracks in the Primorsky Territory for the accounting period of 2005. Contribution of the authors: the authors contributed equally to this article. Tsitsiashvili G.Sh. developed the mathematical part of the article. Bocharnikov V.N. formulated a meaningful statement of the problem and providedfactual material. Krasnopeev S.M. presented the results of calculations in the form of a map. The authors declare no conflicts of interests.

Download file
Counter downloads: 7

Keywords

Poisson flow, coloring of flow points, number of traces, limit theorem for the fraction of the number of traces

Authors

NameOrganizationE-mail
Tsitsiashvili Gurami Sh.Institute for Applied Mathematics, FEB RASguram@iam.dvo.ru
Bocharnikov Vladimir N.Institute of Pacific Ocean Geography FEB RASvbocharnikov@mail.ru
Krasnopeev Sergei M.Institute of Pacific Ocean Geography FEB RASsergeikr@tigdvo.ru
Всего: 3

References

Амбарцумян Р.В., Мекке Й., Штойян Д. Введение в стохастическую геометрию. М.: Наука, 1989. 400 с.
Stoyan D. On some qualitative properties of the Boolean model of stochastic geometry // Z. angew. Math. Mech. 1979. V. 59. P. 447-454.
Stoyan D. Stereological formulae for size distribution through marked point processes // Prob. and Mat. Statist. 1982. V. 2. P. 161-166.
Суханов В.В. Модель пространственного распределения подвижных животных в разреженной популяции // Математиче ское моделирование природных систем: сб. ст. / ред. Е. В. Золотов, Б. И. Семкин. Владивосток: Дальнаука, 1981. С. 10-22.
Кингман Дж. Пуассоновские процессы. М.: МЦНМО, 2007. 136 с.
Пикунов Д.Г. Организация учета численности диких животных в Приморье // Вопросы производственного охотоведения Сибири и Дальнего Востока. Иркутск: ИСХИ, 1970. С. 165-173.
Пикунов Д.Г., Микелл Д.Г., Серёдкин И.В., Николаев И.Г., Дунишенко Ю.М. Зимние следовые учеты амурского тигра на Дальнем Востоке России (методика и история проведения учетов). Владивосток: Дальнаука, 2014. 132 с.
Bocharnikov V.N., Fomenko P.V., Krasnopeev S.M. Assessment of dynamics of Amur Tiger habitat quality influenced by natural and anthropogenic factors // Integrated Tools For Natural Resources Inventories In The 21st Century. 1998. P. 51-55.
Абрамов К.Г. К методике учета тигра // Вопросы организации и методы учета ресурсов фауны наземных позвоночных животных. М.: Изд-во АН СССР, 1961. С. 53-54.
Мурзин А.А. Построение модели динамики популяции Амурского тигра и прогнозные расчеты его численности на период с 2015 по 2022 г. // Международный журнал прикладных и фундаментальных исследований. 2018. № 11. С. 333-340.
Кокс Д., Хинкли Д. Теоретическая статистика. М.: Мир, 1978. 560 с.
Young G.A., Smith R.L. Essentials of Statistical Inference. Cambridge University Press, 2005. 236 p. (Cambridge Series in Statistical and Probabilistic Mathematics).
Холево А.С. Статистические структуры квантовой механики и скрытые параметры. М.: Знание, 1985. 32 с.
Пикунов Д.Г., Серёдкин И.В., Солкин В.А. Амурский тигр (история изучения, динамика ареала, численности, экология и стратегия охраны). Владивосток: Дальнаука, 2010. 104 с.
Холево А.С. Квантовая информатика: прошлое, настоящее, будущее // В мире науки. 2008. № 7. С. 69-75.
 The method of eliminating the interfering parameter in the statistics of the Poisson flow of points | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2023. № 62. DOI: 10.17223/19988605/62/11

The method of eliminating the interfering parameter in the statistics of the Poisson flow of points | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2023. № 62. DOI: 10.17223/19988605/62/11

Download full-text version
Counter downloads: 443