Mathematical model for three-phase AC/DC converter with LC-filter | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/2

Mathematical model for three-phase AC/DC converter with LC-filter

The article is devoted to the problem of developing mathematical models of a three-phase two-level voltage inverter with a split capacitance. An inverter operating in reverse mode (active rectifier) is considered, working as part of on-board power supply system with a primary four-wire source of alternating current with variable frequency. Mathematical models have been developed in a stationary a-b-c coordinate system using a model of power semiconductor keys in the form of switching functions, and in the state space of the converter circuit power switches. An analysis of electromagnetic processes in the circuit has been carried out, and inverter currents and voltages diagrams have been obtained. A comparative analysis of the obtained diagrams with the results of simulation modeling was carried out, and the adequacy of the obtained mathematical models was confirmed. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 2

Keywords

mathematical model, power supply, voltage inverter, active rectifier, pulse width modulation, simulation modeling, model verification

Authors

NameOrganizationE-mail
Ashurkov Nikita V.Novosibirsk State Technical University4445@list.ru
Korobkov Dmitry V.Novosibirsk State Technical Universitykorobkov@corp.nstu.ru
Vavilov Oleg A.Novosibirsk State Technical Universityvavilov.oleg.rp462@gmail.com
Yurkevich Valery D.Novosibirsk State Technical Universityyurkev@mail.ru
Всего: 4

References

Лёвин А.В., Алексеев И.И., Харитонов С.А., Ковалёв Л.К. Электрический самолёт: от идеи до реализации. М.: Машино строение, 2010. 288 с.
Rakhra P. Modelling and simulation of a MEA twin generator UAV electrical power system // 2011 46th International Universi ties' Power Engineering Conference (UPEC), Soest, Germany, 05-08 September 2011. P. 1-5.
Yanchu Li. Optimal controller design for non-affine nonlinear power systems with static var compensators for hybrid UAVs // Tsinghua Science and Technology, TUP. 2021. V. 27 (1). P.196-206.
Zhao H. Energy management strategy for hybrid-electric propulsion UAVs // 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China. 2022. P. 1-6.
Wang G. A Review of power electronics for grid connection of utility-scale battery energy storage systems // IEEE Transactions on Sustainable Energy. 2016. V. 7 (4). P. 1778-1790.
Biya T.S., Sindhu M.R. Design and power management of solar powered electric vehicle charging station with energy storage system // 3rd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2019. P. 815-820.
Brijesh P., Arya G.L., Anoop P., Syam V., Joseph A. Design and development of hybrid power conditioning system for microgrid application // IEEE Texas Power and Energy Conference, TPEC 2023. Memorial Student Center at Texas A&M University, College Station, Texas, USA. 2023. P. 433-438.
Bokopane L., Kusakana K., Vermaak H.J. Energy Management of a Grid-Intergrated Hybrid Peer-to-Peer Renewable Charging Station for Electric Vehicles // Open Innovations Conference, OI 2019, Johannesburg, South Africa. 2018. P. 275-280.
Коробков Д.В. Использование накопителей энергии в подвижных комплексах связи // Актуальные вопросы энергетики: материалы Всерос. науч.-практ. конф. с междунар. участием. Омск: Изд-во ОмГТУ, 2023. С. 8-12.
Divya E., Gnanavadivel J. Harmonic elimination in three phase PWM rectifier using FPGA control // 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India. 2011. P. 436-441. 10.1109/ICETECT.2011. 5760156.
Bai H., Wang F., Xing J. Control strategy of combined PWM rectifier/inverter for a high speed generator power system // 2007 2nd IEEE Conference on Industrial Electronics and Applications. Harbin, China. 2007. P. 132-135.
Hoang Thi, Thu Giang. Fractional proportional integral controller applied into two parallel 3-phase PWM rectifiers // 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. 2017. P. 9-13.
Junjie Ge. Direct power control based on natural switching surface for three-phase PWM rectifiers // IEEE Transactions on Power Electronics. 2014. V. 30 (6). P. 2918-2922.
Degioanni F., Zurbriggen I.G., Ordonez M. Fast and reliable geometric-based controller for three-phase PWM rectifiers // 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020. P. 1891-1896.
Jamma M., Akherraz M., Barar M. ANFIS Based DC-Link voltage control of PWM rectifier-inverter system with enhanced dynamic performance // IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 21-23 October 2018, Washington, DC, 2018. P. 2219-2224.
Fekik A. Direct power control of a three-phase PWM-rectifier based on petri nets for the selection of switching states // 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France. 2018. P. 1121-1125.
Djabali S., Ait Hamou Ali M., Ammar A. Improved virtual flux-direct power control for PWM rectifier based on second-order generalized integrators // 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey. 2020. P. 267-272.
Fahem K., Chariag D.E., Sbita L.Comparative analysis of model predictive control methods for grid-connected PWM rectifier // 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia. 2020. P. 1058-1062.
Xinhui Wu, Panda S.K., Jianxin Xu. Supply-side current harmonics control of three phase PWM boost rectifiers under distorted and unbalanced supply voltage conditions // 2007 7th International Conference on Power Electronics and Drive Systems, Bangkok, Thailand. 2007. P. 647-654.
Chattopadhyay S., Ramanarayanan V. A Voltage-sensorless control method to balance the input currents of a tree-wire boost rectifier under unbalanced input voltages condition // IEEE Transactions on Industrial Electronics. 2005. V. 52 (2). P. 386-398.
Bouafia A., Gaubert J.-P., Chaoui A. High performance direct power control of three-phase PWM boost rectifier under different supply voltage conditions // 2013 15 th European Conference on Power Electronics and Applications (EPE), Lille, France. 2013. P. 1-8.
Yacoubi L., Al-Haddad K., Fnaiech F., Dessaint L.-A. A DSP-based implementation of a new nonlinear control for a three-phase neutral point clamped boost rectifier prototype // IEEE Transactions on Industrial Electronics. 2005. V. 52 (1). P. 197-205.
Bueno A.G., Pomilio J.A. Balancing voltage in the DC bus with split capacitors in three-phase four-wire PWM boost rectifier // 2018 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 2018. P. 523-529.
He L., En X., Jian X., Xinchun L., Yong K. Modeling and analysis of three-phase four-leg PWM boost-type rectifier for double conversion transformerless UPS // IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia. 2011, IEEE. P. 1444-1449.
ГОСТ Р 54073-2017. Система: электроснабжения самолетов и вертолетов. Обшде требования и нормы качества электроэнергии. Введ. 2018-06-01. М.: Стандартинформ, 2018. 39 с.
Vavilov O.A., Korobkov D.V., Yurkevich V.D. Two-level voltage inverter: parametric synthesis of filter and controllers // 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM), Altai, Russian Federation, 2022. P. 372-377.
Вавилов О.А., Юркевич В.Д., Коробков Д.В. Методика синтеза резонансного регулятора на основе метода разделения движений для инвертора напряжения // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2023. № 63. С. 4-15.
Фомин Д.М., Жилина Т.Е. Моделирование в MATLAB/Simulink и SCILAB/Scicos: учеб. пособие. Н. Новгород: Ниже-гор. гос. техн. ун-т им. Р.Е. Алексеева, 2011. 289 с.
 Mathematical model for three-phase AC/DC converter with LC-filter | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/2

Mathematical model for three-phase AC/DC converter with LC-filter | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/2

Download full-text version
Counter downloads: 128