Integration of constraints on intercorrelation coefficients into the optimization problem and conditions for constructing quite interpretable non-elementary linear regressions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/4

Integration of constraints on intercorrelation coefficients into the optimization problem and conditions for constructing quite interpretable non-elementary linear regressions

The article formulates a rigorous definition of quite interpretable non-elementary linear regression, containing nine conditions. To control multicollinearity, linear constraints on intercorrelations between both external regressors and internal variables from different regressors are integrated into the optimization problem. The mathematical apparatus was implemented in a specialized computer program. Using this program, a quite interpretable non-elementary linear regression has been successfully constructed using real data, satisfying all nine formulated conditions. The author declares no conflicts of interests.

Download file
Counter downloads: 4

Keywords

regression analysis, non-elementary linear regression, interpretation, piecewise-defined function, ordinary least squares method, mixed 0-1 integer linear programming problem, multicollinearity, rail transportation

Authors

NameOrganizationE-mail
Bazilevskiy Mikhail P.Irkutsk State Transport Universitymik2178@yandex.ru
Всего: 1

References

Joshi A., Raman B., Mohan C.K., Cenkeramaddi L.R. Application of a new machine learning model to improve earthquake ground motion predictions // Natural Hazards. 2024. V. 120 (1). P. 729-753.
Zhou Y., Liu Y., Wang D., Liu X., Wang Y. A review on global solar radiation prediction with machine learning models in a comprehensive perspective // Energy Conversion and Management. 2021. V. 235. Art. 113960. 10.1016/j.enconman.2021. 113960.
Sonkavde G., Dharrao D.S., Bongale A.M., Deokate S.T., Doreswamy D., Bhat S.K. Forecasting stock market prices using ma chine learning and deep learning models: A systematic review, performance analysis and discussion of implications // International Journal of Financial Studies. 2023. V. 11 (3). Art. 94.
Doshi-Velez F., Kim B. Towards a rigorous science of interpretable machine learning // arXiv preprint arXiv:1702.08608. 2017.
Molnar C.Interpretable machine learning. URL: https://originalstatic.aminer.cn/misc/pdf/Molnar-interpretable-machine-learning_compressed.pdf (accessed: 10.06.2024).
Chen Z., Xiao F., Guo F., Yan J.Interpretable machine learning for building energy management: A state-of-the-art review // Ad vances in Applied Energy. 2023. V. 9. Art. 100123.
Esterhuizen J.A., Goldsmith B.R., Linic S.Interpretable machine learning for knowledge generation in heterogeneous catalysis // Nature catalysis. 2022. V. 5 (3). P. 175-184.
Maulud D., Abdulazeez A.M. A review on linear regression comprehensive in machine learning // Journal of Applied Science and Technology Trends. 2020. V. 1 (2). P. 140-147.
Schober P., Vetter T.R. Logistic regression in medical research // Anesthesia & Analgesia. 2021. V. 132 (2). P. 365-366.
Mejia A.F., Yue Y.R., Bolin D., Lindgren F., Lindquist M.A. A Bayesian general linear modeling approach to cortical surface fMRI data analysis // Journal of the American Statistical Association. 2020. V. 115. P. 501-520. 10.1080/01621459.2019. 1611582.
Fasiolo M., Nedellec R., Goude Y., Wood S.N. Scalable visualization methods for modern generalized additive models // Journal of computational and Graphical Statistics. 2020. V. 29 (1). P. 78-86.
Базилевский М.П. Построение вполне интерпретируемых линейных регрессионных моделей с помощью метода последовательного повышения абсолютных вкладов переменных в общую детерминацию // Вестник Воронежского государственного университета. Сер. Системный анализ и информационные технологии. 2022. № 2. С. 5-16. 10.17308/sait/ 1995-5499/2022/2/5-16.
Montgomery D.C., Peck E.A., Vining G.G.Introduction to linear regression analysis. John Wiley & Sons, 2021.
Miller A. Subset selection in regression. New York: CRC Press, 2002.
Kim S.H., Boukouvala F. Machine learning-based surrogate modeling for data-driven optimization: a comparison of subset selection for regression techniques // Optimization Letters. 2020. V. 14 (4). P. 989-1010.
Chan J.Y.L., Leow S.M.H., Bea K.T., Cheng W.K., Phoong S.W., Hong Z.W., Chen Y.L. Mitigating the multicollinearity problem and its machine learning approach: a review // Mathematics. 2022. Vol. 10 (8). Art. 1283.
Obite C.P., Olewuezi N.P., Ugwuanyim G.U., Bartholomew D.C. Multicollinearity effect in regression analysis: A feed forward artificial neural network approach // Asian J. Probab. Stat. 2020. V. 6 (1). P. 22-33.
Базилевский М.П. Сравнительный анализ эффективности методов построения вполне интерпрегируемых линейных регрессионных моделей // Моделирование и анализ данных. 2023. Т. 13, № 4. С. 59-83.
Базилевский М.П. Технология построения вполне интерпретируемых квазилинейных регрессионных моделей // Прикладная математика и вопросы управления. 2024. № 1. С. 123-138.
Базилевский М.П. Метод построения неэлементарных линейных регрессий на основе аппарата математического программирования // Проблемы управления. 2022. № 4. С. 3-14.
Базилевский М.П. Построение вполне интерпретируемых неэлементарных линейных регрессионных моделей // Вестник Югорского государственного университета. 2022. № 4 (67). С. 105-114.
 Integration of constraints on intercorrelation coefficients into the optimization problem and conditions for constructing quite interpretable non-elementary linear regressions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/4

Integration of constraints on intercorrelation coefficients into the optimization problem and conditions for constructing quite interpretable non-elementary linear regressions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/4

Download full-text version
Counter downloads: 128