Neural network classification software for the gas analytical survey data of respiratory system | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/12

Neural network classification software for the gas analytical survey data of respiratory system

An algorithm and neural network architecture are proposed for classifying signal patterns generated in devices for analyzing the composition of a gas mixture in exhaled air. The devices use a set of non-selective semiconductor gas sensors synchronized with each other and operating in the thermal cycling mode. The implemented algorithm and neural network provide for the normalization of signal values simultaneously from the entire set of sensors and the differentiation of signal patterns. The software package is implemented in the C++ algorithmic programming language in the Qt environment and allows for additional training of the neural network by integrating tools from the database management system and neural network data analysis when increasing the database volume. The studies used data from exhaled air samples taken from healthy volunteers and patients with squamous cell carcinoma of the larynx and oropharynx. The obtained sensitivity and specificity indicators of the neural network data classifier are comparable with modern high-precision X-ray methods for diagnosing respiratory tract tumors. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 7

Keywords

software package, data classification, artificial neural network, training parameters, classifier efficiency analysis

Authors

NameOrganizationE-mail
Obkhodskiy Artem V.Tomsk Polytechnic Universityart707@yandex.ru
Kulbakin Denis E.Cancer Research Institute – branch of the Tomsk National Research Medical Center of the Russian Academy of Sciencekulbakin_d@mail.ru
Obkhodskaya Elena V.Tomsk State Universityfil330a@yandex.ru
Popov Aleksandr S.Tomsk State Universityasptomsktpu@gmail.com
Rodionov Evgeniy O.Cancer Research Institute – branch of the Tomsk National Research Medical Center of the Russian Academy of Science; Siberian State Medical Universityrodionov_eo@oncology.tomsk.ru
Sachkov Victor I.Tomsk State Universityvicsachkov@gmail.com
Chernov Vladimir I.Cancer Research Institute – branch of the Tomsk National Research Medical Center of the Russian Academy of Sciencechernov@tnimc.ru
Choynzonov Evgeny L.Cancer Research Institute – branch of the Tomsk National Research Medical Center of the Russian Academy of Science; Siberian State Medical Universitychoynzonov@tnimc.ru
Всего: 8

References

Shah J.P., Patel S.G. Head and neck surgery and oncology. Mosby, 2013. 713 p.
Zhuikova L.D., Choynzonov E.L., Ananina О.А., Odintsova I.N. Cancer incidence in Siberia and Russian Far East // Siberian Journal of Oncology. 2019. V. 18, is. 6. P. 5-11.
Krilaviciute A., Stock C., Leja M., Brenner H. Potential of non-invasive breath tests for preselecting individuals for invasive gastric cancer screening endoscopy // J. Breath Res. 2018. V. 12. Art. 036009.
Hirsch F.R., Franklin W.A., Gazdar A.F., Bunn P.A. Early detection of lung cancer: Clinical perspectives of recent advances in biology and radiology // Clinical Cancer Research. 2001. V. 7. P. 5-22.
Harris A., Lyu L., Wasserman-Winko T., George S., Johnson J.T., Nilsen M.L. Neck Disability and Swallowing Function in Post treatment Head and Neck Cancer Patients // Otolaryngology - Head and Neck Surgery. 2020. V. 163 (4). P. 763-770.
Clinical Practice Guidelines in Oncology // The National Comprehensive Cancer Network. URL: https://www.nccn.org/professionals/physician_gls/default.aspx.
Behera B., Joshi R., Anil Vishnu G.K., Bhalerao S., Pandya H.J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients // Journal of Breath Research. 2019. V. 13 (2). Art. 024001.
Chernov V.I., Choynzonov E.L., Kulbakin D.E., Obkhodskaya E.V., Obkhodskiy A.V., Popov A.S., Sachkova A.S., Sachkov V.I. Cancer Diagnosis by Neural Network Analysis of Data from Semiconductor Sensors // Diagnostics. 2020. V. 10 (9). Art. 677.
Gordon S.M., Szidon J.P., Krotoszynski B.K., Gibbons R.D., O'Neill H.J. Volatile organic compounds in exhaled air from patients with lung cancer // Clinical Chemistry. 1985. V. 31 (8). P. 1278-1282.
Phillips M., Cataneo R.N., Cummin A.R.C., Gagliardi A.J., Gleeson K., Greenberg J., Maxfield R.A., Rom W.N. Detection of lung cancer with volatile markers in the breath // Chest. 2003. V. 123 (6). P. 2115-2123.
Kesavaraj G., Sukumaran S. A study on classification techniques in data mining // 4th International Conference on Computing, Communications and Networking Technologies. ICCCNT 2013. Art. 6726842.
Blatt R., Bonarini A., Calabro E., Della Torre M., Matteucci M., Pastorino U. Lung cancer identification by an electronic nose based on an array of MOS sensors // IEEE International Conference on Neural Networks - Conference Proc. 2007. P. 1423-1428.
Rivera M.P., Mehta A.C., Wahidi M.M. Establishing the Diagnosis of Lung Cancer // Chest. 2013. V. 143 (5). P. e142S-e165S.
Сорокоумова Д.А., Корелин О.Н., Сорокоумов А.В. Построение и обучение нейронной сети для решения задачи распознавания речи // Информатика и система: управления. 2015. № 3 (110). C. 77-83.
van der Maaten Hinton G.E. Visualizing High-Dimensional Data Using t-SNE // Journal of Machine Learning Research. 2008. V. 9. P. 2579-2605.
Sokolova М., Japkowicz N., Szpakowicz S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation // Advances in Artificial Intelligence. 2006. V. 4304. P. 1015-1021. URL: https://cdn.aaai.org/Work-shops/2006/WS-06-06/WS06-06-006.pdf.
Becker M., Zaidi H. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI // Br. J. Radiol. 2014. V. 87 (1036). Art. 20130677.
 Neural network classification software for the gas analytical survey data of respiratory system | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/12

Neural network classification software for the gas analytical survey data of respiratory system | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2024. № 69. DOI: 10.17223/19988605/69/12

Download full-text version
Counter downloads: 128