Parallel implementation of Lagrangian stochastic dispersion model of mixture transport | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/3

Parallel implementation of Lagrangian stochastic dispersion model of mixture transport

Parallel algorithms for its numerical implementation for multiprocessor multicore computing systems with shared and distributed memory have been developed for the Lagrangian stochastic dispersion model. To create parallel versions of programs, the Message Passing Interface and Open MultiProcessing parallel programming technologies were used. It is found that MPI technology has a slight advantage and allows to accelerate the parallel version of the program when running up to 1000 000 particles by more than 20 times. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 7

Keywords

Lagrangian stochastic dispersion model, mixture transport, parallel implementation, MPI, OpenMP

Authors

NameOrganizationE-mail
Karataeva Ekaterina A.Tomsk State Universitystarch@math.tsu.ru
Starchenko Alexander V.Tomsk State Universitykarat@iao.ru
Всего: 2

References

Марчук Г.И. Математическое моделирование в проблеме окружающей среды. М.: Наука, 1982. 320 с.
Селегей Т.С. Разработка усовершенствованного комплексного метеорологического показателя рассеивающей способности атмосферы (на примере территории Западной Сибири): отчет о научно-исследовательской работе ФГБУ СибНИГМИ. Новосибирск, 2013.
Karataeva E.A. Application of the Lagrangian stochastic dispersion model for urban air pollution simulation // 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics: Proc. of SPIE. 2023. V. 12780.
Атмосферная турбулентность и моделирование распространения примесей / под ред. Ф.Т.М. Ньюистадта, Х. Ван Допа. Л.: Гидрометеоиздат, 1985. 350 с.
Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург, 2002. 608 с.
Starchenko A.V., Danilkin E.A. et al. A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality // Supercomputing Frontiers and Innovations, 2022. V. 9 (1). P. 17-31.
Larson D.J., Nasstrom J.S. Shared- and distributed-memory parallelization of a Lagrangian atmospheric dispersion model // Atmospheric Environment. 2002. V. 36. P. 1569-1564.
Pisso I., Sollum E. et al. The Lagrangian particle dispersion model FLEXPART version 10.3 // Geosci. Model Dev. Discuss. 2019.
Roberti D.R., Souto R.P. et al. Parallel Implementation of a Lagrangian Stochastic Model for Pollutant Dispersion // International Journal of Parallel Programming. 2005. V. 33 (5). P. 485-498.
Lenotre L. A Strategy for Parallel Implementations of Stochastic Lagrangian Simulation // Monte Carlo and Quasi-Monte Carlo Methods: conference paper / R. Cools, D. Nuyens (eds). Springer, 2016. P. 507-520. (Springer Proceedings in Mathematics and Statistics; v. 163).
Hoffmann L., Baumeister P.F. et al. Massive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs) // Geosci. Model Dev. 2022. V. 15. P. 2731-2762.
Семёнов Е.В., Старченко А.В. и др. Выбор технологии распараллеливания численного решения конвективно-диффузионного уравнения на гибридной многопроцессорной вычислительной системе // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2020. № 51. С. 111-120.
Thomson D.J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows // J. Fluid Mech. 1987. V. 180. P. 529-556.
Hurley P.J. The air pollution model (TAPM) version 2. Part 1: Technical description // CSIRO Atmospheric Research Technical Paper. 2002. № 55. 49 p.
Старченко А.В., Кижнер Е.А. и др. Численное моделирование погоды и качества атмосферного воздуха в городах. Томск: Изд-во Том. ун-та, 2022. 140 с.
Антонов А.С. Технологии параллельного программирования MPI и OpenMP. М.: Изд-во Моск. ун-та, 2013. 344 с.
Luhar A.K., Britter R.E. A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer // Atmospheric Environment. 1989. V. 23 (9). P. 1911-1924.
Franzese P., Luhar A.K. et al. An efficient Lagrangian stochastic model of vertical dispersion in the convective boundary layer // Atmospheric Environment. 1999. V. 33 (15). P. 2337-2345.
 Parallel implementation of Lagrangian stochastic dispersion model of mixture transport | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/3

Parallel implementation of Lagrangian stochastic dispersion model of mixture transport | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/3

Download full-text version
Counter downloads: 64