Knowledge model of the EESS expert system shell | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/11

Knowledge model of the EESS expert system shell

The article proposes an original approach to building tools for knowledge testing using production expert systems. The presence of an inference mechanism and an apparatus for working with inaccurately presented information ensures the non-deterministic nature of the question-answer system. The ability to apply the approach in various fields is provided by the expert system shell. Knowledge testing tasks require the extension of traditional ideas about production expert systems. The article formulates requirements for such systems and defines a knowledge model of EESS (Extended Expert System Shell). The development ideas were mainly born in application to testing students' knowledge, but the proposed capabilities will also be useful in other areas, for example, in medical diagnostics - a traditional subject area of expert systems. The author declares no conflicts of interests.

Download file
Counter downloads: 12

Keywords

expert system shell, production knowledge model, information uncertainty, knowledge testing

Authors

NameOrganizationE-mail
Babanov Alexey M.Tomsk State Universitybabanov@mail.tsu.ru
Всего: 1

References

Russell S., Norvig P. Artificial Intelligence: A Modem Approach (Pearson Series in Artificial Intelligence). 4th ed. Pearson, 2020. 1136 p.
Vigo R., Zeigler D.E., Wimsatt J. Uncharted Aspects of Human Intelligence in Knowledge Based "Intelligent" Systems // Philosophies. 2022. V. 7 (46). P. 1-19.
Krivoulya G.F., Shkil A.S., Kucherenko D.Y. Analysis of production rules in expert systems of diagnosis // Automatic Control and Computer Sciences. 2013. Is. 47. P. 331-341.
Knowledge Engineering Shells / N.G. Bourbakis (ed.). Singapore; River Edge, NJ: World Scientific Publishing Company, 1993. 536 p. (Advanced Series On Artificial Intelligence; v. 2).
Николайчук О.А., Павлов А.И., Юрин А.Ю. Компонентный подход: модуль продукционной экспертной системы // Программные продукты и системы. 2010. № 3. С. 41-44.
Грищенко М.А., Николайчук О.А., Павлов А.И., Юрин А.Ю. Инструментальное средство создания продукционных экспертных систем на основе MDA // Образовательные ресурсы и технологии. 2016. № 2 (14). С. 144-151.
Еремеев А.П. Проектирование экспертных систем средствами инструментальной системы GURU. М.: МЭИ, 1996. 52 с.
Nalepa G.J.Rules as a Knowledge Representation Paradigm // Nalepa G.J. Modeling with Rules Using Semantic Knowledge Engineering. Springer, 2018. P. 3-25.
Walley P. Measures of uncertainty in expert systems // Artificial Intelligence. 1996. V. 83. P. 1-58.
Dubey S., Pandey R.K., Gautam S.S. Dealing with Uncertainty in Expert Systems // International Journal of Soft Computing and Engineering (IJSCE). 2014. V. 4 (3). P. 105-111.
 Knowledge model of the EESS expert system shell | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/11

Knowledge model of the EESS expert system shell | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/11

Download full-text version
Counter downloads: 71