Computational diagnostics of objects that allow the heuristic strengthening of algorithms for solving reverse problems
The task of diagnosing industrial products for the presence of thin-length defects such as cracks and abrasions is considered. This problem is solved in the conditions of tomographic reconstruction and belongs to the class of reverse tasks. The classic algorithm of computed tomography has a high complexity in solving this problem, and in the case of a small thickness of the defect, it may not restore it at all. In this paper, software has been developed to solve a special problem of flaw detection based on a modified algorithm that uses a priori information about the reference of the product as a heuristic amplification. The results of computational experiments demonstrate the effectiveness of the proposed approach in solving the problem of detecting cracks in the object under study and allow us to conclude that its prospects in the tasks of industrial flaw detector. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.
Keywords
software,
computed tomography,
industrial flaw detection,
heuristic algorithm,
reference sample,
multi-thread processingAuthors
Zerkal Sergey M. | Novosibirsk State Technical University | zerkal@corp.nstu.ru |
Peshkov Alexander V. | Novosibirsk State Technical University | mupeskov1997@mail.ru |
Всего: 2
References
Bai H., Su M., Pang C., Xiong Z., Binyuan Xia, Zhao D., Li C., Mo Z., Gao F. An image reconstruction method for transmission computed tomography with the constraint of the linear attenuation coefficients // Applied Radiation and Isotopes. 2023. V. 202. Art. 111062.
Choi H.-J., Jeong J., Lee H., Kim S.G., Ahn J.J., Lee H.C., Min C.H. Image reconstruction method of gamma emission tomography based on prior-aware information and machine learning for partial-defect detection of PWR-type spent nuclear fuel // Nuclear Engineering and Technology. 2024. V. 56 (11). P. 4770-4781.
Serrano E., Garcia-Blas J., Carretero J., Desco M., Abella M. Accelerated iterative image reconstruction for cone-beam computed tomography through Big Data frameworks // Future Generation Computer Systems. 2020. V. 106. P. 534-544.
Shyamala Bharathi P., Shalini C. Advanced hybrid attention-based deep learning network with heuristic algorithm for adaptive CT and PET image fusion in lung cancer detection // Medical Engineering & Physics. 2024. V. 126. Art. 104138.
Bellens S., Guerrero P., Vandewalle P., Dewulf W. Machine learning in industrial X-ray computed tomography - a review // CIRP Journal of Manufacturing Science and Technology. 2024. V. 51. P. 324-341.
Xu P.-P., Liu T.-Y., Zhou F., Chen Q., Rowe J., Tesche C., Zhang L.-J. Artificial intelligence in coronary computed tomography angiography // Medicine Plus. 2024. V. 1, is. 1.
Zhu G., Fu J. A lightweight solution of industrial computed tomography with convolutional neural network // NDT & E Interna tional. 2020. V. 116. Art. 102347.
Plessis A., Roux S.G., Guelpa A.Comparison of medical and industrial X-ray computed tomography for non-destructive testing // Case Studies in Nondestructive Testing and Evaluation. 2016. V. 6, pt. A. P. 17-25.
Тихонов А.Н., Арсенин В.Я., Тимонов А.А. Математические задачи компьютерной томографии. М.: Наука, 1987. 160 с.
Ito K., Jin B. Inverse Problems: Tikhonov theory and algorithms. Singapore: World Scientific Publishing Company, 2014. 332 p.
Важенцева Н.В., Лихачев А.В. Новый метод трехмерной томографии для неполных траекторий источника // Труды Международной конференции "Современные проблемы прикладной математики и механики: теория, эксперимент и практика", посвященной 90-летию со дня рождения академика Н.Н. Яненко (Новосибирск, Россия, 30 мая - 4 июня 2011).
Liu Y., Beyer A., Schuetz P., Hofmann J., Flisch A., Sennhauser U. Cooperative data fusion of transmission and surface scan for improving limited-angle computed tomography reconstruction // NDT & E International. 2016. V. 83. P. 24-31.
Piault P., King A., Henry L., Rathore J.S., Guignot N., Deslandes J.-P., Itie J.-P. A thresholding based iterative reconstruction method for limited-angle tomography data // Tomography of Materials and Structures. 2023. V. 2. Art. 100008.
Хахлютин В.П. Об одной задаче интегральной геометрии на плоскости // Доклады Академии наук СССР. 1991. Т. 320, № 4. С. 832-834.
Зеркаль С.М. Решение на ЭВМ одного класса задач дефектоскопии // Доклады Академии наук СССР. 1990. Т. 314, № 1. С. 180-182.
Зеркаль С.М. Локальная томографическая реконструкция огибающей тонкого дефекта с использованием эталонного образца // Сибирский журнал индустриальной математики. 2000. Т. 3, № 1 (5). С. 110-115.
Image reconstruction (CT) // Radiopaedia. 2023. 23 Mar. URL: https://radiopaedia.org/articles/image-reconstruction-ct?lang=us (accessed: 04.10.2024).
Takase A. How Does CT Reconstruction Work? // Rigaku. 2023. Jam. 11. URL: https://rigaku.com/products/imaging-ndt/x-ray-ct/learning/blog/how-does-ct-reconstruction-work (accessed: 04.10.2024).
Преобразование Радона // Википедия. URL: https://ru.wikipedia.org/wiki/Преобразование_Радона (дата обращения: 04.10.2024).
Бронников А.В., Воскобойников Ю.Е., Преображенский Н.Г. Итерационные алгоритмы в задачах томографии полупрозрачных сред. Новосибирск: ИТПМ, 1989. 43 с. (Препринт; № 18).
Пешков А.В. Вычислительная диагностика трещин и отслоений с использованием томографического подхода при наличии эталона исследуемого объекта // Доклады Томского государственного университета систем управления и радиоэлектроники. 2023. Т. 26, № 4. С. 95-101.
Peshkov A.V., Zerkal S.M.Computational-heuristic algorithm for tomographic solution of industrial flaw detection problems // 16 International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE-2023): Proc. Novosibirsk, 10-12 Nov. 2023. IEEE, 2023. P. 910-915.
The Java Tutorials. Thread Pools // Oracle. Java Documentation. URL: https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html (accessed: 04.10.2024).
The optimal thread-pool size in Java: Explaining the formula // Backendhance. 2023. Aug. 9. URL: https://backendhance.com/en/blog/2023/optimal-thread-pool-size/(accessed: 04.10.2024).