Necessary optimality conditions for fractional-order difference equations with delay | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/1

Necessary optimality conditions for fractional-order difference equations with delay

The paper studies a terminal discrete optimal control problem with fractional-order delay. Using one of the variants of the increment method, the necessary conditions for first-order optimality are proved in the form of an analogue of the discrete maximum principle, a linearized maximum condition, and the Euler equation. The author declares no conflicts of interests.

Download file
Counter downloads: 3

Keywords

fractional-order difference equations with delay, increment formula, discrete maximum principle, optimal control, necessary conditions for optimality, an analogue of the linearized maximum condition, an analogue of the Euler equation

Authors

NameOrganizationE-mail
Aliyeva Saadat T.Baku State University; Institute of Control Systems, Science and Education of Azerbaijan; Azerbaijan State University of Economics; Azerbaijan Universitysaadat.t.aliyeva@au.edu.az
Всего: 1

References

Agrawal O.P. Formulation of Euler-Lagrange equations for fractional variational problems // J. Math. Anal. Appl. 2002. V. 272 (1). P. 368-379.
Agrawal O.P. A general finite element formulation for fractional variational problems // J. Math. Anal. Appl. 2008. V. 337 (1). P. 1-12.
El-Nabulsi R.A., Torres D.F.M. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (a, P) // Math. Methods Appl. Sci. 2007. V. 30 (15). P. 1931-1939. URL: https://arxiv.org/abs/math-ph/0702099.
Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.М. Математическая теория оптимальных процессов. М. : Наука, 1984. 364 с.
Gabasov R., Kirillova F.M. High-order necessary conditions for optimality // SIAM J. Control. 1972. V. 10. P. 127-168.
Baleanu D., Jarad F. Difference discrete variational principles // Mathematical Analysis and Applications. Melville, NY : Amer. Inst. Phys., 2006. P. 20-29.
Jarad F., Baleanu D. Discrete variational principles for Lagrangians linear in velocities // Rep. Math. Phys. 2007. V. 59 (1). P. 33-43.
Baleanu D., Defterli O., Agrawal O.P. A central difference numerical scheme for fractional optimal control problems // J. Vib. Control. 2009. V. 15 (4). P 583-597.
Алиева С.Т. Принцип максимума Понтрягина для нелинейных разностных уравнений дробного порядка // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2021. № 54. С. 4-11. doi: 10.17223/19988605/54/1.
Алиева С.Т. Необходимые условия оптимальности первого и второго порядков в одной задаче управления, описываемой нелинейными разностными уравнениями дробного порядка // Автоматика и телемеханика. 2023. № 2. С. 54-65. doi: 10.31857/S0005231023020034.
Bhalekar S., Daftardar-Gejji V., Baleanu D., Magin R. Fractional Bloch equation with delay // Computers and Mathematics with Applications. 2011. V. 61 (5). P. 1355-1365.
Magin R.L. Fractional calculus models of complex dynamics in biological tissues // Computers and Mathematics with Applications. 2010. V. 59 (5). P. 1586-1593.
Bahaa G.M. Fractional optimal control problem for differential system with delay argument // Advanc. Differen. Equat. 2017. Art. 69. P. 1-19. doi: 10.1186/s13662-017-1121-6.
Si-Ammour A., Djennoune S., Bettayeb M. A sliding mode control for linear fractional systems with input and state delays // Communications in Nonlinear Science and Numerical Simulation. 2009. V. 14 (5). P. 2310-2318.
Miller K., Ross B. An introduction to the fractional calculus and fractional differential equations. New York :Wiley, 1993. 366 p.
Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives - Theory and Applications. Linghorne, PA : Gordon and Breach, 1993. 976 р.
Podlubny I. Fractional Differential Equations. San Diego, CA : Academic Press, 1999. 340 р.
Kilbas A., Srivastava M.H., Trujillo J.J. Theory and Application of Fractional Differential Equations. Elsevier Science, 2006. 541 p. (North Holland Mathematics Studies; v. 204).
Мансимов К.Б. Дискретные системы. Баку : Изд-во Бакинского гос. ун-та, 2013. 151 с.
Алиева С.Т., Мансимов К.Б. Аналог линеаризованного принципа максимума для задачи оптимального управления нелинейными разностными уравнениями дробного порядка // Вестник Пермского университета. Математика, механика и информатика. 2021. Вып 1 (52). С. 9-15. doi: 10.17072/1993-0550-2021-1-9-15.
 Necessary optimality conditions for fractional-order difference equations with delay | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/1

Necessary optimality conditions for fractional-order difference equations with delay | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/1

Download full-text version
Counter downloads: 86