Non-stationary flows in queuing networks without queue and with deterministic service time | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/5

Non-stationary flows in queuing networks without queue and with deterministic service time

The paper builds a mathematical model of an acyclic queuing network with an unsteady Poisson input flow, no queue, and deterministic service time. The non-stationary intensities of the flows passing through the network are calculated. It is proving that if the input flow is Poisson, then all other flows passing through the network are also Poisson. Moreover, the number of customers located in each node of the network also has a Poisson distribution. The parameters of these Poisson distributions are calculated using special integral relations. The author declares no conflicts of interests.

Download file
Counter downloads: 2

Keywords

Poisson flow, acyclic network, directed graph, coloring theorem, maximum path length in graph

Authors

NameOrganizationE-mail
Tsitsiashvili Gurami Sh.Institute for Applied Mathematics, Far Eastern Branch of RASguram@iam.dvo.ru
Всего: 1

References

Jackson J.R.Networks of Waiting Lines // Oper. Res. 1957. V. 5 (4). P. 518-521.
Gordon K.D., Newell G.F. Closed Queuing Systems with Exponential Servers // Oper. Research. 1967. V. 15 (2). P. 254-265.
Basharin G.P., Gaidamaka Yu.V., Samouylov K.E. Mathematical Theory of Teletraffic and Its Applications to the Analysis of Multiservice Communication of Next Generation Networks // Autom. Control.Comput. Sci. 2013. V. 47. P. 62-69. doi: 10.3103/S0146411613020028.
Balsamo S., De Nitto V. A survey of Product-form Queuing Networks with Blocking and their Equivalences // Annals of Operations Research. 1998. V. 79. P. 97-117.
Boucherie R.J., van Dijk N.M. On the arrival theorem for product form queuing networks with blocking // Performance Evaluation. 1997. Vol. 29 (3). P. 155-176.
Лемперт А.А., Жарков М.Л., Казаков А.Л., Ву Х.З. Моделирование морского контейнерного терминала с использованием сети массового обслуживания // Управление большими системами. 2024. Вып. 112. C. 310-337.
Ивницкий В.А. Теория произвольного входящего потока с применениями к нестационарным системам и сетям массового обслуживания. Saarbrucken : LAP Lambert, 2012. 640 c.
Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ. М. : Вильямс, 2011. 1296 с.
Цициашвили Г.Ш., Осипова М.А. Стационарные потоки в ациклических сетях массового обслуживания // Дальневосточный математический журнал. 2016. Т. 16, вып. 2. С. 223-228.
Кингман Дж. Пуассоновские процессы. М. : МЦНМО, 2007. 136 с.
 Non-stationary flows in queuing networks without queue and with deterministic service time | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/5

Non-stationary flows in queuing networks without queue and with deterministic service time | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/5

Download full-text version
Counter downloads: 86