Numerical probabilistic arithmetic for generalized piecewise polynomial functions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/9

Numerical probabilistic arithmetic for generalized piecewise polynomial functions

This paper examines the important case of arithmetic operations on random variables defined by their probability density functions. The capabilities of existing approaches are analyzed and their limitations are highlighted. A new approach is proposed based on representing the distribution laws of arguments as generalized piecewise polynomial functions. For these purposes, probabilistic arithmetic is developed, based on models and methods of computational probabilistic analysis. It is noted that the proposed computational technique allows for the consideration of the properties of probability density functions and the analysis of distributions with "heavy tails." Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 2

Keywords

probabilistic arithmetic, computational probabilistic analysis, generalized piecewise polynomial functions, heavy-tailed distributions

Authors

NameOrganizationE-mail
Dobronets Boris S.Siberian Federal UniversityBDobronets@yandex.ru
Popova Olga A.Siberian Federal UniversityOlgaArc@yandex.ru
Всего: 2

References

Colombo A., Jaarsma R. A powerful numerical method to combine random variables // IEEE Transactions on Reliability. 1980. V. R-29 (2). P. 126-129.
Moore R.E. Risk Analysis without Monte Carlo Methods // Freiburger Intervall-Berichte. 1984. V. 84 (1). P. 1-48.
Герасимов В.А., Добронец Б.С., Шустров М.Ю. Численные операции гистограммной арифметики и их применения // Автоматика и телемеханика. 1991. № 2. С. 83-88.
Glen A.G., Evans D.L., Leemis L.M. APPL: A Probability Programming Language // The American Statistician, 2001. V. 55 (2). P. 156-166.
Springer M.D. The Algebra of Random Variables. Hoboken, NJ : John Wiley & Sons, 1979.
Korzen M., Jaroszewicz S. PaCAL: A Python Package for Arithmetic Computations with Random Variables // Journal of Statistical Software. 2014. V. 57 (10). Р. 1-34. doi: 10.18637/jss.v057.i10.
Williamson R., Downs T. Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds // International Journal of Approximate Reasoning. 1990. V. 4 (2). P. 89-158.
Михайлов Г.А., Войтишек А.В. Статистическое моделирование. Методы Монте-Карло : учеб. пособие для бакалавриата и магистратуры. М. : Юрайт, 2018.
Добронец Б.С., Попова О.А. Вычислительный вероятностный анализ: модели и методы. Красноярск : Сиб. фед. ун-т, Ин-т космических и информационных технологий, 2020.
Clauset A., Shalizi C.R., Newman M.E.J. Power-law distributions in empirical data // SIAM Rev. 2009. V. 51. P. 661-703.
 Numerical probabilistic arithmetic for generalized piecewise polynomial functions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/9

Numerical probabilistic arithmetic for generalized piecewise polynomial functions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 73. DOI: 10.17223/19988605/73/9

Download full-text version
Counter downloads: 86