Asymptotic and nonasymptotic properties of Hodges - Lehmann adaptiveestimators
The adaptive HL -estimators are studied in this paper for finite samples (n = 20) and for thecase, when n > ∞ . They are shown to have good robustness and efficiency properties for samplesizes 20 and larger. Two measures of the performance estimators are considered. Monte Carlostudy is based on N = 10000 random samples of sizes n = 20,40 .
Download file
Counter downloads: 295
Keywords
робастные оценки, функция влияния, адаптивные оценки, метод статистических испытаний, adaptive estimation, robust methods, small sample variances, influence function, relative efficiencyAuthors
Name | Organization | |
Shulenin Valery P. | Tomsk State University | shvp@fpmk.tsu.ru |
References
Hodges J.L., Lehmann E.L. Estimation of location based on rank tests // Ann. Math. Statist. 1963. V. 34. P. 598 - 611.
Andrews D.F., Bickel P.Z., Hampel F.R., et al. Robust estimation of location: survey and advances. Princeton, N.Y.: Princeton Univ. Press, 1972. 375 p.
Шуленин В.П. Введение в робастную статистику. Томск: Изд-во Том. ун-та, 1993. 227 с.
Шуленин В.П. Об устойчивости класса оценок Ходжеса - Лемана // Тр. 6-й Всес. конф. по теории кодирования и передачи информ. Москва - Вильнюс, 1978. С. 147 - 151.
Shulenin V.P. Asymptotic properties and robustness a generalized Hodges-Lehmann estimate. II-th PRAGUE Conf. On Information Theory. Abstracts. 1990.
Shulenin V.P., Deeva T.A. The numerical characteristics of robustness of the class of the Hodges-Lehmann Generalized estimators // Proc. the Third Russian-Korean International Symposium on Science and Technology. KORUS'99. June 22 - 25, 1999 at Novosibirsk State Technical University, Novosibirsk, Russia. V. 2. P. 510 - 513.
Shulenin V.P., Deeva T.A. Asymptotic efficiency for the generalized Hodges - Lehmann estimator under the normal scale mixture distributions. Computer data analysis and modeling. Minsk, 1998. V. 2. P. 107 - 112.
Shulenin V.P. Asymptotic properties of the trimmed GL- and U-statistics // 6th Prague Symposium on Asymptotic Statistics. Prague, 1998, August 23 - 28. Prague Stochatics'98. Abstracts. Р. 84.
Шуленин В.П. Асимптотические свойства урезанных GL-и U-статистик // Вестник ТГУ. Приложение. 2004. № 9(II). С. 184 - 190.
Serfling R.J. Generalized L-, M- and R-statistics // Ann. Statist. 1984. V. 12. P. 76 - 86.
Serfling R.J. Approximation Theorems of Mathematical Statistics. N.Y.: Wiley, 1980. 371 p.
Хеттсманспергер Т. Статистические выводы, основанные на рангах. М.: Финансы и статистика, 1987. 334 с.
Van Zwet W.R. Convex Transformations of Random Variables // Math. Centrum. Amsterdam, 1964.
Hogg R.V. Adaptive robust procedures: partial review and some suggestions for future applications and theory // J. Amer. Statist. 1974. V. 35. P. 73 - 101.
