The balanced heuristics for vehicle routing problem with capacity restriction for instances. | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2010. № 3(12).

The balanced heuristics for vehicle routing problem with capacity restriction for instances.

New heuristics is proposed for approximate solution of Vehicle Routing Problem (VRP) with capacity restriction and metric distances between vertices. VRP is the task of finding a set of cyclic tours, each vertex-customer must be included in one of these tours and all of them must contain special common vertex - depo. The strategy includes two phases: the clustering of vertex in groups and solution of Travelling-Salesman problem (TSP) inside of groups. The proposed strategy performs clustering by multiple dichotomic dividing vertex set onto groups with keeping balancing criterion. Clustering takes time nearly O(n) and TSP solution with Lin-Kernighan iterative heuristics takes time not exceeding O (n).According to computing experiment the quality of suggested strategy on some examples is insignificantly less than the quality of one of the best approaches to VRP solution - Osman's strategy . By increasing of number of vertices up to 150 and more with proportional increasing number of vertices in each tour new heuristics demonstrates better quality than Osman's strategy with required time less than Osman's by an order. More successive results can be obtained by combining these two heuristics'.Strategies were tested on benchmarks suggested by Christofides, Mingozzi and Tothb and on examples of randomly generated samples with number of vertices from 50 to 200.Due to good time requirement new heuristics can be used for tasks with up to 1000 vertices and more, what is impossible for Osman's strategy.

Download file
Counter downloads: 296

Keywords

vehicle routing problem (VRP), clustering, combinatorial optimization, approximate strategies, traveling salesman problem (TSP), кластеризация, задача маршрутизации транспорта (VRP), задача коммивояжера (TSP), приближённые алгоритмы, дискретная оптимизация

Authors

NameOrganizationE-mail
Kostyuk Yuri L.Tomsk State Universitykostyuk_y_l@sibmail.com
Pozhidaev Michael S.Tomsk State Universitymsp@altlinux.org
Всего: 2

References

Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983. 416 с.
Osman I.H. Metastrategy Simulated annealing and tabu search algorithms for the vehicle routing problem // Annals of Operations Research. 1993. V. 41. P. 421 - 451..
Lin S., Kernighan B. An effective heuristic algorithm for the traveling salesman problem // Operations Research. 1973. V. 21. P. 498 - 516..
Christofides N., Mingozzi A., and Toth P. The vehicle routing problem // Combinatorial Optimization / ed. N. Christofides, A. Mingozzi, P. Toth and С. Sandi. N.Y.: Wiley, 1979.
Костюк Ю.Л., Пожидаев М.С. Приближённые алгоритмы решения сбалансированной задачи k коммивояжёров // Вестник Томского госуниверситета. Управление, вычислительная техника и информатика. 2008. №1(2). С. 106 - 112.
 The balanced heuristics for vehicle routing problem with capacity restriction for instances. | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2010. № 3(12).

The balanced heuristics for vehicle routing problem with capacity restriction for instances. | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2010. № 3(12).

Download file