Mathematical simulation of phase change fluid - solid. | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 3(16).

Mathematical simulation of phase change fluid - solid.

The paper presents a problem of simulation of phase equilibrium curve fluid - solid for binaryand multicomponent mixtures. Researching of equilibrium is important for all processes where aninteraction between solid and liquid stages exists.The minimization of a free energy of the Gibbs on parameter of salvation ƒ is applied tobuild-up of mathematical model, gated in as the relation of number of moleculas of a builder A tonumber of moleculas of a builder B in molecular compound generated solution. The model usingminimization on parameter of salvation, can be referred to predictive model, which are based onstate equation. Introduced method of model operation of phase equilibrium a solid body - fluidfor binary systems allows to obtain the expression for temperature as function mole rate of componentmixture:T(z1) = [ƒH10z1 + ƒH20(1-z1)]/{ ƒH10z1 / T 10 + ƒH20(1-z1)/ T20 -R[ z1 ln z1 +(1-z1) ln (1-z1)]},where ƒHi0 - enthalpy melting of pure component i by temperature Ti0; zi - effective mole part ofcomponents in binary systems: z1 = x1/(x1+ ƒx2), z2 = x2/(x1 /ƒ + x2); ƒ - parameter of solvation;i = 1,2.Thermodynamic coordination of model is tested by Heringtons and Redlih-Kisters methods:11 20lg( / ) 0, 1  γ γ dz =where ƒi - activity coefficient of component, i = 1,2. From thermodynamic coordination of modelthe coefficient of association k = k1/k2 is defined, which is equal the ratio of molecules number incluster of component А to number of molecules in cluster of component B in liquid states. Thisallows one to build curves of liquidus lines, which are close to experimentally measured values.That model also can be used to describe the fluid - steam and solid-solid equilibrium withformation of compound in solid phase. This method used for computation of phase equilibrium intriple and multicomponent real systems, accompanied by solvation of molecules in solution andassociation pure components. The advantage of the method of phase equilibrium consists in smallnumber of parameters for computation, for example a temperature and enthalpy melting of purecomponents for ideal systems.

Download file
Counter downloads: 339

Keywords

parameter of association, minimization on parameter of solvation, exuberant energy of Gibbs, a fluid-solid equilibrium, параметр ассоциации, минимизация по параметру сольватации, избыточная энергия Гиббса, равновесие жидкость - твердое

Authors

NameOrganizationE-mail
Esina Zoya N.Kemerovo State Universityezn2@rambler.ru
Korchuganova Margarita R.Kemerovo State Universitymarkarina@mail.ru
Murashkin Vitaliy V.Kemerovo State Universityzitner@mail.ru
Всего: 3

References

Доценко С.П. Марцинковский А.В., Данилин В.Н. // Физико-химический анализ свойств многокомпонентных систем [Электронный ресурс]. 2004. Вып. 1. URL: http//:www. kubstu.ru/th/fams/dopoln3.htm
Мариничев А.Н., Турбович М.Л., Зенкевич И.Г. Физико-химические расчеты на микроЭВМ: Справ. изд. Л.: Химия, 1990. 256 с.
Khimeche K., Dahmani A. Measurement and prediction of (solid + liquid) equilibria of (alkanediamine + biphenyl) mixtures // J. Chem. Thermodynamics. 2006. V. 38. P. 1192-1198.
Коган В.Б. Гетерогенные равновесия. Л.: Химия, 1968. 432 с.
Дымент О.Н., Казанский К.С., Мирошников А.М. Гликоли и другие производные окисей этилена и пропилена. М.: Химия, 1976. 373 с.
Domanska U., Goskowska M. Experimental solid + liquid equilibria and excess molar volumes of alkanol + hexylamine mixtures: Analysis in terms of the ERAS, DISQUAC and Mod. UNIFAC models // Fluid Phase Equilibria. 2004. V. 216. P. 135-145.
Costa M.C., Rolemberg M.P., Boros L.A.D., et al. Solid-Liquid Equilibrium of Binary Fatty Acid Mixtures// J. Chem. Eng. Data. 2007. V. 52. P. 30-36.
Costa M.C., Krahenbuhl M.A., Meirelles A.J.A., et al. High pressure solid-liquid equilibria of fatty acids // Fluid Phase Equilibria. 2007. V. 253. P. 118-123.
Tumakaka F.I., Prikhodko V., Sadowski G. Modeling of solid-liquid equilibria for systems with solid-complex phase formation // Fluid Phase Equilibria. 2007. V. 260. P. 98-104.
Rocha S.A., Guirardello R. An approach to calculate solid-liquid phase equilibrium for binary mixtures // Fluid Phase Equilibria. 2009. V. 281. P. 12-21.
 Mathematical simulation of phase change fluid - solid. | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 3(16).

Mathematical simulation of phase change fluid - solid. | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 3(16).

Download file