Ruin probability of an insurance company under double stochastic insurance premium and insurance payment currents | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 4(17).

Ruin probability of an insurance company under double stochastic insurance premium and insurance payment currents

The aim of this paper is to generalize the classical model of an insurance company for thesituation when the intensity of the insurance premiums flow ƒ(t) is the homogeneous Markovchain with continuous time, the states ƒ(t) =ƒi (i= 1,m) and the matrix of infinitesimal characteristicsƒ =[ƒi j], which has the rank m −1 . Insurance premiums are independent identicallydistributed with the distribution density ϕ(x) , the mean M{x} =a and the second moment2M{x}=a2 . Analogously the insurance payments flow ƒ(t) is the homogeneous Markovchain with continuous time, the states ƒ(t) =ƒi (i= 1,n) and the matrix of infinitesimal characteristicsƒ = [ƒi j ] , which has the range n −1 . Insurance payments are independent identicallydistributed with the distribution density ƒ(x), the mean M{x} =b and the second moment2M{x}=b2 . Let ƒ be the loading of insurance premium, ƒ0 and ƒ0 be the average intensitiesof premiums' and payments' flows correspondingly. Then ƒ0a= (1+ƒ)ƒ0b.Let Gi j(s) be the ruin probability of an insurance company if at the beginning moment itscapital is s and the intensities quantities are ƒi and ƒ j correspondingly. It is shown, that for ƒ << 1ƒ ⎨− ƒ ⎬= ⎩ ⎭ + ƒƒ + ƒ − ƒ  ϕwhere( ) ( ) ( ) ( ) 1 1 1 10 2 0 22 21 0 0 0 01 1 1 1,2m m n nk k kj j k k kj jk j k jA a b a R b Q− − − −= = = =ƒ +ƒ= − ƒƒ ƒ − ƒ ƒ ƒ −ƒ − ƒƒ ƒ −ƒ ƒ ƒ −ƒ A2= ƒ0b i are the final distribution of the premiums' intensity quantity, ƒi are the final distribution ofthe payments' intensity quantity, the matrixes1( ) 1( ) R ij i,j 1,m 1,Q ij i,j 1,n 1 − − = ⎡⎣ƒ ⎤⎦ = − = ⎡⎣ƒ ⎤⎦ = − .

Download file
Counter downloads: 319

Keywords

loading of insurance premium, double stochastic flow, probability of ultimate ruin, нагрузка страховой премии, дважды стохастический поток, вероятность разорения

Authors

NameOrganizationE-mail
Livshits Klimentiy I.National Research Tomsk State Universitykim47@mail.ru
Bublic Yana S.Anzhero-Sudzhensk branch of Kemerovo State Universityyana@asf.ru
Всего: 2

References

Лившиц К.И. Вероятность разорения страховой компании для пуассоновской модели // Изв. вузов. Физика. 1999. № 4. С. 28-33.
Ланкастер П. Теория матриц. М.: Наука, 1978. 280 с.
Маркус М., Минк Х. Обзор по теории матриц и матричных неравенств. М.: Наука, 1972. 232 с.
Panjer H.Y., Willmont G.E. Insurance Risk Models. Society of Actuaries, 1992. 442 p.
Наумов В.А. Марковские модели потоков требований // Системы массового обслуживания и информатика. М.: УДН, 1978. С. 67-73.
Лившиц К.И., Бублик Я.С. Вероятность разорения страховой компании при дважды стохастическом потоке страховых выплат // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1(10). С. 66-77.
 Ruin probability of an insurance company under double stochastic insurance premium and insurance payment currents | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 4(17).

Ruin probability of an insurance company under double stochastic insurance premium and insurance payment currents | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2011. № 4(17).

Download file