Investigation of nonmarkov system of mass service with unlimited number of servers and input MMP-flow by the method of sifted flow
There is considered a queuing system with MMP input flow, defined by matrix of infinitesimalcharacteristics Q and a diagonal matrix , which is defined by conditional intensity k,. Durationsof service of requests are stochastic independent, identically distributed with (nonexponential) distribution function B(x). Input request occupies any free server. After ending of servicethe request leaves the system.Under condition of growing time of service the investigation was fulfilled by making use ofthe methods of sifted flow and asymptotic analysis. Numerical investigation allows to obtain thedomain of applicability of asymptotic results in prelimit situation.
Keywords
метод асимптотического анализа,
ММР-поток,
метод просеянного потока,
method of the sifted flow,
MMP-flow,
method of the asymptotic analysisAuthors
Nazarov Anatolie A. | National Research Tomsk State University | nazarov@fpmk.tsu.ru |
Semenova Inna A. | National Research Tomsk State University | inna_ac@mail.ru |
Всего: 2
References
Назаров А.А., Семенова И.А. Исследование RQ-систем методом асимптотических семиинвариантов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 3 (12). С. 85-96.
Лопухова С.В. Асимптотические и численные методы исследования специальных потоков однородных событий: дис. ... канд. физ.-мат. наук. Томск, 2008.
Назаров А.А., Моисеева А.А. Метод асимптотический анализ в теории массового обслуживания. Томск: Изд-во НТЛ, 2006. 112 с.
Breuer L., Baum D. The Inhomogeneous BMAP/G/infinity queue // Proc. 11th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Communication Systems (MMB 2001). Aachen, Germany, 2001. P. 209-223.
Baum D., Kalashnikov V. No-waiting stations with spatial arrival processes and customer motion // Информационные процессы. 2002. Т. 2. № 2. С. 143-145.
Reed J. Distribution-valued heavy-traffic limits for the G/GI/ queue [Электронный реcурс]. URL: http://pages.stern.nyu.edu/~jreed/Papers/DistributionFinal.pdf, свободный (дата обращения: 10.05.2011).
Baltzer J.C. On the fluid limit of the M/G/ queue Queueing Systems // Theory and Applications. August 2007. V. 56. Issue 3-4. P. 255-265.
Decreusefond L., Moyal P. A functional central limit theorem for the M/GI/ queue // Ann. Appl. Probability. 2008. V 18. No. 6. P. 2156-2178.
Doorn E.A. van, Jagers A.A. Note on the GI/GI/infinity system with identical service and interarrival- time distributions // J. Queueing Systems. 2004. No. 47. P. 45-52.