Parameter estimation and their change-point detectionfor generalized autoregressive process with conditional heteroscedasticity
The problem of change-point detection of the parameters of GARCH(p,q) process is considered.The utoregressive parameters of the process before and after the change point are supposedto be unknown. A sequential procedure for estimating the parameters based on the weighted leastsquares method is developed. The choice of the weights and the stopping rule allows one to constructan estimator with a preassigned mean square error depending on parameter H of the procedure.The procedure of change-point detection is based on comparison of parameter estimators ondifferent observation intervals. The upper bounds for probabilities of the false alarm and the delayare found.
Keywords
mean square error,
guaranteed estimation,
least squares method,
GARCH(p,q),
change-point,
гарантированное оценивание,
среднеквадратическое отклонение,
метод наименьших квадратов,
момент разладки,
GARCH(p,q)Authors
Burkatovskaya Yulia B. | National Research Tomsk Polytechnic University | tracey@tpu.ru |
Vorobeychikov Sergey E. | National Research Tomsk State University | sev@mail.tsu.ru |
Sergeeva Ekaterina E. | National Research Tomsk Polytechnic University | sergeeva_e_e@mail.ru |
Всего: 3
References
Дмитренко А.А., Конев В.В. О последовательной классификации процессов авторегрессии с неизвестной дисперсией помех // Проблемы передачи информации. 1995. Т. 31. Вып. 4. С. 51−62.
Meder N., Vorobejchikov S. On guaranteed estimation of parameters of random processes by the weighted least square method // Proc. 15th Triennial World Congress of the International Federation of Automatic Control. Barcelona, 2002. No. 1200.
Baillie R.T., Chung H. Estimation of GARCH models from the autocorrelation of the squares of a process // J. Time Ser. Anal. 2001. V. 22. No. 6. P. 631−650.
Storti G. Minimum distance of GARCH(1,1) models // Computattional Statistics and Data Analysis. 2006. V. 51. P. 1803−1821.
Буркатовская Ю. Б., Воробейчиков С.Э. Гарантированное обнаружение момента разладки GARCH-процесса // Автоматика и телемеханика. 2006. № 12. С. 56−70.
Peng I., Yao Q. Least absolute deviations estimation for ARCH and GARCH models // Biometrica. 2003. V. 90. N. 4. P. 967−997.
Muler N., Yohai V.J. Robust estimates for GARCH models // J. Statistical Planning and Inference. 2008. V. 138. N. 10. P. 2918−2940.
Boudt K., Croux C. Robust M-estimation of multivariate GARCH models // Computational Statistics and Data Analysis. 2010. V. 54. P. 2459−2469.
Hamadeh T., Zakoian J.-M. Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processe // J. Statist. Plann.Inference. 2011. V. 141. P. 488−507.
Bai J. Least squares estimation of a shift in linear process // J. Time Series Analysis. 1994. V. 15. N.5. P. 453−472.
Francq C., Zacoian J.M. Maximum likelihood estimation of pure GARCH and ARMA - GARCH processes // Bernoulli. 2004. V. 10. P. 605−637.
Pan J., Wang H., Tong H. Estimation and power-transformed and threshold GARCH models // J. Econometrics. 2008. V. 142. P. 352−378.
Berkes I., Horvath L., Kokoszka P.S. GARCH processes: Structure and estimation // Bernoulli. 2003. V. 9. P. 201−227.
Berkes I., Horvath L. The efficiency of the estimators of the parameters in GARCH processes // Annals of Statistics. 2004. V. 32. P. 633−655.
Gombey E., Serban D. Monitoring parameter change in AR(p) time series models // Statistics Centre Technical Reports 05.04, The University of Alberta, Edmonton, Canada, 2005.
Gombey E. Change detection in autoregressive time series // J. Multivariate Analysis. 2008. V. 99. P. 451−464.
Hillebrand E. Negleting parameter changes in GARCH models// J. Econometrics. 2005. V. 129. P. 121−138.
Davies R.A., Huang D., Yao Y.-C. Testing for change in the parameter value and order of autoregressive model // Ann. Statist. 1995. V. 23. P. 282−304.
Bollerslev T. Generalized autoregressive conditional heteroskedasticity // J. Econometrics. 1986. V. 86. P. 307−327.