Portfolio optimization in the financial market withserially dependent returns under constraints
In this work we consider the optimal portfolio selection problem under hard constraintson trading volume amounts. We assume that the risky asset returns are seriallydependent processes with finite conditional moments. The problem of portfoliooptimization is stated as a dynamic problem of tracking a financial benchmark.We propose to use the model predictive control (MPC) methodology in orderto solve the problem. We also present the numerical modeling results that giveevidence of capacity and effectiveness of proposed approach.
Keywords
model predictive control,
serially dependent returns,
investment portfolio,
управление с прогнозирующей моделью,
сериально зависимые доходности,
инвестиционный портфельAuthors
Dombrovskii Vladimir V. | National Research Tomsk State University | dombrovs@ef.tsu.ru |
Obyedko Tatyana Yu. | National Research Tomsk State University | tani4kin@mail.ru |
Всего: 2
References
Tsay R.S. Analysis of Financial Time Series. A Wiley-Interscience Publication. John Wiley and Sons. Inc., 2002.
Dombrovskii V.V., Dombrovskii D.V., Lyashenko E.A. Model predictive control of systems with random dependent parameter under constraints and it's application to the investment portfolio optimization // Automation and Remote Control. 2006. V. 67. No. 12. P. 1927−1939.
Primbs J.A., Sung C.H. A stochastic receding horizon control approach to constrained index tracking // Asia-Pacific Finan Markets. 2008. V. 15. P. 3−24.
Herzog F., Dondi G, Geering H.P. Stochastic model predictive control and portfolio optimization // Intern. J. Theoretical and Applied Finance. 2007. V. 10. No. 2. P. 203−233.
Dombrovskii V.V., Ob'edko T.Yu. Predictive control of systems with Markovian jumps under constraints and its application to the investment portfolio optimization // Automation and Remote Control. 2011. V. 72. No. 5. P. 989−1003.
Dombrovskii V.V., Dombrovskii D.V., and Lyashenko E.A. Predictive control of randomparameter systems with multiplicative noise. Application to investment portfolio optimization // Automation and Remote Control. 2005. V. 66. No. 4. P. 583−595.
Rawlings J. Tutorial: model predictive control technology // Proc. Amer. Control Conf. San Diego. California. June 1999. P. 662−676.
Marcowitz H.M. Portfolio selection // J. Finance. 1952. V. 7. No. 1. P. 77−91.
Merton R.C. Continuous-time Finance. Cambridge: Balckwell, 1990.
Runggaldier W.J. On stochastic control in finance // Mathematical Systems Theory in Biology, Communication, Computation and Finance / D. Gilliam and J. Rosental, Eds. N.Y.: Springer, 2002.