Model predictive controlof interconnected hybrid systems with Markov jumps under constraints
Modern control systems are generally composed of interacting subsystems with both continuousand discrete dynamics. In particular, the investment portfolio is a complex system, which canbe consisted of risky financial assets of different classes, where the dynamics of returns variesdiscontinuously in accordance with the evolution of interrelated states of Markov chains describing,for example, the behavior of the various sectors of economy.In this paper we consider complex Markov jump linear system composed of interconnectedsubsystems. The parameters of each subsystem change in accordance with the evolution of thesimple connected Markov chains whose states are interrelated. We use model predictive controlapproach to solve the problem. The open-loop feedback control strategy is derived taking into accountexplicit constraints on the input variables. Predictive strategies computation includes thedecision of the sequence of quadratic programming tasks.
Keywords
constraints,
vector simple connected Markov chain,
interconnected hybrid systems,
hybrid systems,
model predictive control,
ограничения,
векторная односвязная цепь Маркова,
взаимосвязанные гибридные системы,
управление с прогнозирующей модельюAuthors
Dombrovskii Vladimir Vladimir V. | National Research Tomsk State University | dombrovs@ef.tsu.ru |
Obyedko Tatyana Y. | National Research Tomsk State University | tani4kin@mail.ru |
Всего: 2
References
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov Models: Estimation and Control. Berlin: Springer-Verlag, 1995.
Billio M., Pelizzon L. Value-at-Risk:a multivariate switching regime approach // J. Empirical Finance. 2000. No. 7. P. 531−554.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96−112.
Blackmore L., Bektassov A, Ono M., Williams B.C. Robust optimal predictive control of jump Markov linear systems using particles // Hybrid systems: Comput. and Control / A. Bemporad, A. Bicchi, G. Buttazzo, Eds. New York: Springer-Verlag, 2007. V. 4416, Lecture Notes in Computer Science. P. 104−117.
Bernardini D., Bemporad A. Scenario-based model predictive control of stochastic constrained linear systems // Proc. 48th IEEE Conf. Decision and Control. Shanghai. P.R. China. December 2009. P. 6333−6338.
Rawlings J. Tutorial: Model predictive control technology // Proc. Amer. Control Conf. San Diego. California. June 1999. P. 662−676.
Dragan V., Morozan T. The Linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping // IEEE Transactions on Automatic Control. 2004. V. 49. No. 5. P. 665−675.
Bemporad A., Di Cairano S. Model-predictive control os discrete hybrid stochastic automata // IEEE Transactions on Automatic Control. 2011. V. 56. No. 6. P. 1307−1321.
Costa O.L.V., Paulo W.L. Generalized coupled algebraic riccati equations for discrete-time Markov jump with multiplicative noise systems // European J. Control. 2008. No. 5. P. 391−408.
Пакшин П.В. Дискретные системы со случайными параметрами и структурой. М: Физматлит, 1994.