Algorithm for analysis of ensemble paths control systemssubjected to the random change of structure and jumps | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2012. № 3(20).

Algorithm for analysis of ensemble paths control systemssubjected to the random change of structure and jumps

We consider the problem of analysis of ensemble path control systems subjected to the randomchange of structure and jumps. If S is the number of structures in the system, s(t) is a discreterandom process with a finite set of values {1, 2,…,S}, then state vector of the system y(t) isa n-dimensional random process described under the condition s(t) =l by the following ordinarydifferential equations:( )0 0dy(t) fl(t, y(t)), y(t ) y Rn,dt= =  ƒ  t[t0,T]where; f (l)(t, y) is the vector function of the dimension n; l is a number of structures of the system.The transition probability of the discrete random process s(t) satisfies the following conditions:P{s(t + ƒt) = r | s(t) = l, y(t) = y}= ƒlr(t, yt+ot),P{s(t + ƒt) = l | s(t) = l, y(t) = y}= 1− ƒll (t, yt+ot),s(t0)=s0, l,r=1,2,...,S, lr;1( , ) (, )Sll lrr lt y t y= ƒ = ƒ ƒ .Statistical algorithm was constructed for solving the problem of analysis of ensemble pathcontrol systems subjected to the random change of structure and jumps. Developed algorithm isapplied to analysis of the satellite stabilization system.

Download file
Counter downloads: 330

Keywords

Monte Carlo method, systems with a random structure, метод Монте-Карло, система со случайной структурой

Authors

NameOrganizationE-mail
Averina Tatyana A.Institute of Computation Mathematics and Mathematical Geophysics SB RAS; Novosibirsk State University
Всего: 1

References

Rybakov K.A., Sotskova I.L., Yudin M.A. Synthesis of optimal control algorithms for small satellite subject to the possible failure of control unit // Theoretical questions of computers and software. M.: MIREA, 2006. P. 98-103.
Гурман В.И. Вырожденные задачи оптимального управления. М.: Наука, 1977. 250 с.
Крамер Г. Математические методы статистики. М.: Мир, 1975. 648 с.
Михайлов Г.А. Весовые методы Монте-Карло. Новосибирск: Изд-во СО РАН, 2000. 248 с.
Михайлов Г.А., Ермаков С.М. Курс статистического моделирования. М.: Наука, 1976. 320 с.
Artemiev S.S., Averina Т.А. Numerical analysis systems of ordinary and stochastic differential equations. Utrecht: VSP, 1997. 176 p.
Михайлов Г.А., Аверина Т.А. Алгоритм «максимального сечения» в методе Монте- Карло // ДАН. 2009. Т. 428. № 2. С. 163-165.
Averina Т.А. Algorithm for statistical simulation of two types of random-structure systems // Russ. J. Numer. Anal. Modelling. 2001. V. 16. No. 6. P. 467-482.
Пантнлеев А.В., Руденко Е.А., Бортаковский А.С. Нелинейные системы управления: описание, анализ и синтез. М.: Вузовская книга, 2008. 312 с.
Аверина Т.А. Статистический алгоритм моделирования динамических систем с переменной структурой // Сиб. журн. вычисл. матем. 2002. Т. 5. № 1. С. 1-10.
Овсянников Д.А. Математические методы управления пучками. Л.: Изд-во ЛГУ, 1980. 228 с.
Казаков И.Е., Артемьев В.М., Бухалев В.А. Анализ систем случайной структуры. М.: Физматлит, 1993. 272 с.
 Algorithm for analysis of ensemble paths control systemssubjected to the random change of structure and jumps | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2012. № 3(20).

Algorithm for analysis of ensemble paths control systemssubjected to the random change of structure and jumps | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2012. № 3(20).

Download file