Mean-variance MPC for linear systems with Markovian jumps under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2012. № 56.

Mean-variance MPC for linear systems with Markovian jumps under constraints

We consider the following Markov jump linear system with multiplicative noise B [a(k +1), k +1] + £ Bj [a(k +1), k + 1]w (k +1) _ j=1 where x(k) is the n - dimensional vector of state, u(k) is the n - dimensional vector of control; a(k), k = 0,1,2., denotes a time-invariant Markov chain taking values in a finite set of observable states {1,2,.. ,,v} with transition probability matrix P = [Pj] , i, j e {1,2,..., v}, Pj= P {a(k +1) = aj |a(k) = a,}, }= 1, j=1 V and initial distribution p = P{a(0) = i}, i = 1,2,...,v; £p = 1; ro (k) are independent zero-mean i=1 random variables with unit variance and independent of the Markov chain a(k), k = 0,1,2.; A, B,[a(k),k], j = 1,.,n, - the matrixes of corresponding dimensions, Bj[a(k),k] e {B/'- }, j = 0,.,n, i = 1,.,v. Let y(k) = L(k)x(k) be the scalar output of the system (1), where L(k) is the vector of corresponding dimension. The following constraints are imposed on control actions u n(k) < S(k)u(k) < umax(k), (2) where S(k) is the matrix of corresponding dimension. For control of system (1) we synthesize the strategies with a predictive control model. At each step k we minimize the «mean-variance» criterion with a noving control horizon m J(k + m / k) = £p (k,i)M {(y(k + i) - M {y(k + i) / x(k), a(k)} ) / x(k), a(k)} -i=1 -p (k, i)M {y(k + i)/x(k), a(k)} + M {u (k + i -1/k) R(k, i - 1)u(k + i -1/k)/x(k), a(k)}, on trajectories of system (1) over the sequence of predictive controls u(k/k),..., u(k+m-1/k), which depend on system's state at moment k, under constraints (2), R(k,i')>0 is the weigh matrix of corresponding dimension, p!(k,i)>0, p (k,i) >0 are weigh coefficients, m is the prediction horizon, k is the current moment. The synthesis of predictive control strategies is reduced to the solving of a sequence of quadratic programming tasks.

Download file
Counter downloads: 392

Keywords

управление с прогнозирующей моделью, «mean-variance»-критерий, марковские скачки, ограничения, model predictive control, «mean-variance» criterion, Markovian jumps, constrains

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.National Research Tomsk State Universitydombrovs@ef.tsu.ru
Obyedko Tatyana Y.National Research Tomsk State Universitytani4kin@mail.ru
Всего: 2

References

Пакшин П.В. Дискретные системы со случайными параметрами и структурой. М: Физ-матлит, 1994.
Пакшин П.В., Ретинский Д.М. Робастная стабилизация систем случайной структуры с переключаемой статической обратной связью по выходу // Автоматика и телемеханика. 2005. № 7. C. 135-147.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Смагин В.И., Поползухина Е.В. Синтез следящих систем управления для объектов со случайными скачкообразными параметрами и мультипликативными возмущениями // Вестник Томского государственного университета. 2000. № 271. С. 171-175.
Blackmore L., Bektassov A., Ono M., Williams B.C. Robust optimal predictive control of jump Markov linear systems using particles // Hybrid Systems: Comput. and Control / A. Bemporad, A. Bicchi, G. Buttazzo, eds. New York: Springer-Verlag, 2007. V. 4416.
Costa O.L.V., Okimura R.T. Discrete-time mean-variance optimal control of linear systems with Markovian jumps and multiplicative noise // Intern. J. Control. 2009. V. 82. No. 2. P. 256-267.
Costa O.L.V., Oliveira A. Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises // Automatica. 2012. V. 48. No. 2. P. 304-315.
Dragan V., Morozan T. The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping // IEEE Transactions Automatic Control. 2004. V. 49. No. 5. P. 665-675.
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov Models: Estimation and Control. Berlin: Springer-Verlag, 1995.
LiX., ZhouX.Y. Indefinite stochastic LQ control with Markovian jumps in a finite time horizon // Communications in Information and Systems. 2002. No. 2. P. 265-282.
Yin G., Zhou X.Y. Markowitz mean-variance portfolio selection with regime switching: from discrete-time models to their continuous-time limits // IEEE Transactions Automat. Control. March 2004. V. 39. No. 3. P. 349-360.
Zhou X.Y., Yin G. Markowitz's mean-variance portfolio selection with regime-switching: a continuous-time model // SIAM Journal on Control and Optimization. 2003. V. 42. No. 4. P. 1466-1482.
MarcowitzH.M. Portfolio selection // J. Finance. 1952. V. 7. No. 1. P. 77-91.
Bajeux-Besnainou I., Portait R. Dynamic asset allocation in a mean-variance framework // Management Science. 1998. V. 44. No. 11. Part 2. P. S79-S95.
LiD., Ng W.-L. Optimal dynamic portfolio selection: multi-period mean-variance formulation // Mathematical Finance. 2000. No. 10. P. 387-406.
Zhou X.Y., Li D. Continuous-time mean-variance portfolio selection: a stochastic LQ framework // Applied Mathematics & Optimization. 2000. No. 42. P. 19-33.
Rawlings J. Tutorial: Model predictive control technology // Proc. Amer. Control Conf. San Diego. California. June 1999. P. 662-676.
 Mean-variance MPC for linear systems with Markovian jumps under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2012. № 56.

Mean-variance MPC for linear systems with Markovian jumps under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2012. № 56.

Download file