A bivariate boxplot based on robust highly efficient estimators of scale and correlation
A bivariate model-based boxplot based on fast highly efficient and robust FQn-estimates of scale and correlation is proposed. The choice of parameters is motivated by their high performance and is based on the state-of-the-art methods. It is shown that FQn-boxplot has a better speed performance over the conventional boxplot.
Download file
Counter downloads: 394
Keywords
визуализация, двумерный боксплот, робастность, visualization, bivariate boxplot, robustnessAuthors
Name | Organization | |
Andrea Kliton | St. Petersburg State Polytechnical University | kliton.andrea@gmail.com |
Smirnov Pavel O. | St. Petersburg State Polytechnical University | s.paul@mail.ru |
Shevlyakov Georgy L. | St. Petersburg State Polytechnical University | gshevlyakov@yahoo.com |
References
Андреа К., Лаврентьева Г.М., Смирнов П.О., Шевляков Г.Л., Визуализация данных двумерными fqn-боксплотами // Высокие технологии, фундаментальные исследования, экономика. Т.1: Сб. статей XII Междунар. научно-практ. конф. «Фундаментальные и прикладные исслед
Rousseeuw P.J., Ruts I, Tukey J.W. The bagplot: A bivariate boxplot // The American Statistician. 1999. V. 53. P. 382-387.
Тьюки Дж. Анализ результатов наблюдений. Разведочный анализ. М.: Мир, 1981.
Masse J.C., Plante J.F. A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators // Computational Statistics & Data Analysis. 2003. V. 42. P. 1-26.
Vardi Y. and Zhang C.H. The multivariate L1-median and associated data depth // PNAS. 1999. V. 97. P. 1423-1426.
Crou C., Rousseeuw P.J. Time-efficient algorithms for two highly robust estimators of scale // Computational Statistics. 1992. V. 1. P. 411-428.
Смирнов П.О., Шевляков Г.Л. Приближение оценки Qn параметра масштаба с помощью быстрых M-оценок // Вестник Сибирского государственного аэрокосмического университета. 2010. Т. 5 (31). С. 83-85.
Shevlyakov G., Smmov P. Robust estimation of the correlation coefficient: An attempt of survey // Austrian J. Statistics. 2011. V. 40. P. 147-156.
Shevlyakov G.L., VtichevsM N.O. Robustness in data analysis: criteria and methods. Utrecht: VSP, 2002. 315 p.
Hubert M., Rousseeuw P.J., Van Aelst S. High-breakdown robust multivariate methods // Statistical Science. 2008. V. 23. P. 92-119.
Bernholt T., Fischer P. The complexity of computing the MCD-estimator // Theoretical Computer Science. 2004. V. 326. P. 383-398.
Ftizmoser P., Identification of Multivariate Outliers: A performance study // Austrian J. Statistics. 2005. V. 34. P. 127-138.
