Choice of optimal smoothing parameter for nonparametric estimation of regression reliability model | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 1(22).

Choice of optimal smoothing parameter for nonparametric estimation of regression reliability model

The problem of nonparametric estimation of regression reliability model is considered. We consider nonparametric estimates, suggested by Beran. The main factor influencing the quality of estimates is the choice of smoothing parameter. On the example of samples, simulated from the accelerated failure time model it has been shown that the choice of smoothing parameter should be based on the difference between reliability functions corresponding to different values of the covariate, whereas the influence of the sample size and plan of experiment is not significant in the choice of smoothing parameter. In this paper we propose the algorithm of the choice of optimal smoothing parameter for non-parametric Beran estimate of regression reliability model. The algorithm is based on the minimization of standard deviation of lifetimes from nonparametric estimate of the inverse reliability function. In all considered examples the Beran estimates, obtained with the optimal smoothing parameter, turn out to be more accurate than in the case of using fixed parameter.

Download file
Counter downloads: 525

Keywords

функция надёжности, регрессионная модель, непараметрическая оценка Берана, параметр сглаживания, reliability function, regression model, nonparametric Beran estimator, smoothing parameter

Authors

NameOrganizationE-mail
Demin Victor A.Novosibirsk State Technical Universityvicdemin@gmail.com
Chimitova Ekaterina V.Novosibirsk State Technical Universityekaterina.chimitova@gmail.com
Всего: 2

References

Beran R. Nonparametic Regression with Randomly Censored Survival Data. Technical report. Department of Statistics. University of California. Berkeley, 1981.
Dabrowska D.M. Nonparametric quantile regression with censored data // Sankhya Ser. A. 54. 1992. P. 252-259.
Gonzalez M.W., Cadarso S.C. Asymptotic properties of a generalized Kaplan-Meier estimator with some application // J. Nonparametric Statistics. 1994. No. 4. P. 65-78.
McKeague I.W., Utikal K.J. Inference for a nonlinear counting process regression model // Ann. Statist. 1990. V. 18. P. 1172-1187.
Van Keilegom I., Akritas M.G., Veraverbeke N. Estimation of the conditional distribution in regression with censored data: a comparative study // Computational Statistics & Data Analysis. 2001. V. 35. P. 487-500.
Akritas M.G. Nearest neighbor estimation of a bivariate distribution under random censoring // Ann. Statist. 1994V. 22. P. 1299-1327.
Расин Д. Непараметрическая эконометрика: вводный курс // Квантиль. 2008. № 4. С. 7-26.
Хардле В. Прикладная непараметрическая регрессия. М.: Мир, 1993. C. 6-45.
 Choice of optimal smoothing parameter for nonparametric estimation of regression reliability model | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 1(22).

Choice of optimal smoothing parameter for nonparametric estimation of regression reliability model | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 1(22).

Download file