Adaptive data-driven portfolio optimization in the non-stationary financial market under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 3(24).

Adaptive data-driven portfolio optimization in the non-stationary financial market under constraints

In this work we propose a novel methodology for optimal dynamic allocation of a portfolio of risky financial assets under hard constraints on trading volume amounts. Our approach is direct in that it uses directly the observed historical data to construct an adaptive algorithm for online portfolio selection. The problem of portfolio optimization is stated as a dynamic problem of tracking a financial benchmark. We use the model predictive control (MPC) methodology in order to solve the problem. The main features of our approach are (a) the ability to adapt to non-stationary market environments by dynamically incorporating new information into the decision process; (b) no stochastic assumptions are needed about the stock prices, and (c) the flexibility of dealing with portfolio constraints. We also present the numerical modeling results, based on futures traded on the Russian Stock Exchange FORTS that give evidence of capacity and effectiveness of proposed approach.

Download file
Counter downloads: 440

Keywords

investment portfolio, non-stationary financial market, adaptive optimization, model predictive control, инвестиционный портфель, нестационарный финансовый рынок, адаптивная оптимизация, управление с прогнозирующей моделью

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Всего: 1

References

Marcowitz H.M. Portfolio selection // J. Finance. 1952. V. 7. No. 1. P. 77-91.
Merton R.C. Continuous-time finance. Cambridge: Blackwell, 1990.
Runggaldier W.J. On stochastic control in finance, in Mathematical systems Theory in Biology, Communication, Computation and Finance, D. Gilliam and J. Rosental, Eds., New-York: Springer, 2002.
Cont R. Empirical properties of asset returns: stylized facts and statistical issues // Quantitative Finance. 2001. V. 1. P. 223-236.
Rawlings J. Tutorial: model predictive control technology // Proc. Amer. Control Conf. San Diego. California. June 1999. P. 662-676.
Dombrovskii V.V., Dombrovskii D.V., and Lyashenko E.A. Predictive control of random-parameter systems with multiplicative noise. Application to investment portfolio optimization // Automation and Remote Control. 2005. V. 66. No. 4. P. 583-595.
Dombrovskii V.V., Ob'edko T.Yu. Predictive control of systems with Markovian jumps under constraints and its application to the investment portfolio optimization //Automation and Remote Control. 2011. V. 72. No. 5. P. 989-1003.
Herzog F., Dondi G, Geering H.P. Stochastic model predictive control and portfolio optimization // Int. J. Theoretical and Applied Finance. 2007. V. 10. No. 2. P. 203-233.
Primbs J.A., Sung C.H. A stochastic receding horizon control approach to constrained index tracking // Asia-Pacific Finan Markets. 2008. V. 15. P. 3-24.
Bemporad A, Puglia T., Gabriellini T. A Stochastic model predictive control approach to dynamic option hedging with transaction costs // Proc. American Control Conference, San Francisco, CA,USA, June 29 - July 01, 2011. P. 3862-3867.
Dombrovskii V.V., Dombrovskii D.V., Lyashenko E.A. Model predictive control of systems with random dependent parameter under constraints and It's application to the investment portfolio optimization // Automation and Remote Control. 2006. V. 67. No. 12. P
Dombrovskii V.V., Ob'edko T.Yu. Portfolio optimization in the financial market with serially dependent returns under constraints //Вестник Томского государственного университета. Управление, вычислительная техника и информатика. (Tomsk State University Jo
 Adaptive data-driven portfolio optimization in the non-stationary financial market under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. №  3(24).

Adaptive data-driven portfolio optimization in the non-stationary financial market under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 3(24).

Download file