Critical phenomena on self-similar lattices | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 3(24).

Critical phenomena on self-similar lattices

Recently, methods for computing the number of embeddings of graphs in self-similar structures were proposed, allowing the use of the series-expansion technique for statistical systems on these geometries. In comparison to other techniques, the series-expansion method provides the most reliable results whose accuracy can be improved in a systemic way by increasing the order of the series. The graph counting method can be used in a fairly general family of self-similar deterministic fractals which are obtained by the iteration of a fixed rule of construction. It enables one to obtain the behavior of statistical system on fractal lattices which have the same fractal dimension but different lacunarities, allowing a complete study of those system on non-Euclidean lattices. In this paper, we apply the graph counting method to find the coefficients of the high-temperature series expansions for the susceptibility of the Ising model on Sierpinski carpets.

Download file
Counter downloads: 346

Keywords

самоподобные решётки, высокотемпературное разложение, метод Фабио, self-similar lattices, high-temperature expansion, Fabio method

Authors

NameOrganizationE-mail
Bondarenko A.N.Institute of Mathematics. Siberian Branch of the Russian Academy of Sciences (Novosibirsk)bondarenkoan1953@mail.ru
Gunkin A.Y.Novosibirsk State Technical Universityshamrock24@mail.ru
Всего: 2

References

Бондаренко А.Н., Селезнев В.А., Харбанова Е.В. Спектральная асимптотика фрактальных решёток и задачи определения степени усталости материала // Научый вестник НГТУ. Новосибирск: Из-во НГТУ, 2003. № 2. С. 97-106.
Белавин А.А., Кулаков А.Г., Усманов Р.А. Лекции по теоретической физике. М.: МЦНМО. 2001. 224 с.
Фейнман Р. Лейтон Р. Фейнмановские лекции по физике. М.: Едиториал УРСС. 2004. 439 с.
Гулд Х. ТобочникЯ. Компьютерное моделирование в физике. М.: Мир, 1992. 518 с.
Bonnier B. Leroyer Y. Myers C. High-temperature expansions on Sierpinski carpets // Phys. Rev. 1989. V. 40. No. 13. P. 8961-8966.
Yang Z.R. Solvable Ising model on Sierpinski carpets: The partition function // Phys. Rev. 1994. V. 49. No. 3. P. 2457 - 2460.
Fabia Aarao Reis D.A., Riera R. High-temperature series expansion for Ising-like systems on fractals // Phys. Rev. 1994. V. 49. No. 4. P. 2579-2587.
 Critical phenomena on self-similar lattices | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. №  3(24).

Critical phenomena on self-similar lattices | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 3(24).

Download file