Classification of sequences with use hidden markov models in the conditions of the inexact task of their structure | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 3(24).

Classification of sequences with use hidden markov models in the conditions of the inexact task of their structure

The problem of sequences classification with use of methodology of hidden Markov models (HMM) is considered. Classification is spent both with use of the standard approach, and with classifier of k nearest neighbors (kNN), and a support vector machines in space of the signs initiated by HMM. The behavior of qualifiers was investigated while errors in the structure specification of HMM are presented. Researches have shown that under conditions of structural uncertainty use of qualifiers of k nearest neighbors and the classifier based on a SVM, leads to improvement of classification quality in comparison with the traditional approach based on the ratio of logarithms of likelihood function. Thus the gain in correct classification in the considered two-class problem in comparison with the traditional approach in some cases can reach 40 % both for kNN, and for SVM. The last shows more exact results in comparison with kNN. The maximum improvement reaches about 18 %.

Download file
Counter downloads: 448

Keywords

скрытые марковские модели, производные от логарифма функции правдоподобия, классификатор k ближайших соседей, метод опорных векторов, hidden Markov models, derivative of log likelihood function, classifier of k nearest neighbors, support vector machines

Authors

NameOrganizationE-mail
Gultyaeva Tatyana A.Novosibirsk State Technical Universitygult_work@mail.ru
Popov Alexander A.Novosibirsk State Technical Universityalex@fpm.ami.nstu.ru
Всего: 2

References

Rabiner L.R. A tutorial on hidden markov models and selected applications in speech recognition // Proc. IEEE. 1989. V. 77(2). P. 257-285.
Загоруйко Н.Г. Прикладные методы анализа данных и знаний. Новосибирск: Изд-во Института математики, 1999. 270 с.
Piatt J.C. Sequential minimal optimization: a fast algorithm for training support Vector Machines [Электронный ресурс]: Technical Report MSR-TR-98-14; Microsoft Research. URL: http://luthuli.cs.uiuc.edu/~daf/courses/Optimization/Papers/smoTR.pdf.
Гультяева Т.А. Вычисление первых производных от логарифма функции правдоподобия для скрытых марковских моделей // Сб. научных трудов НГТУ. Новосибирск: Изд-во НГТУ, 2010. № 2(60). С. 39-46.
Гультяева Т.А. Особенности вычисление первых производных от логарифма функции правдоподобия для скрытых марковских моделей при длинных сигналах // Сб. научных трудов НГТУ. Новосибирск: Изд-во НГТУ, 2010. № 2(60). С. 47-52.
Гультяева Т.А., Попов А.А. Классификация зашумленных последовательностей, порожденных близкими скрытыми марковскими моделями // Научный вестник НГТУ. Новосибирск: Изд-во НГТУ, 2011. № 3(44). С. 3-16.
 Classification of sequences with use hidden markov models in the conditions of the inexact task of their structure | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. №  3(24).

Classification of sequences with use hidden markov models in the conditions of the inexact task of their structure | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2013. № 3(24).

Download file