Nonparametric goodness-of-fit tests in testing adequacy of reliability models for right censored data
The problem of testing goodness-of-fit with the failure time model (AFT-model) model and the Cox proportional hazards model by censored samples is considered. Testing goodness-of-fit with considered models is carried out on the basis of the residual samples analysis. The hypothesis of goodness-of-fit with proposed distribution law is tested by using the nonparametric Kol-mogorov, Cramer-von Mises-Smirnov and Anderson-Darling tests. It has been shown that in the case of complete data the test statistics distributions for testing goodness-of-fit with the reliability models coincide with approximations, obtained for data without covariates. In the case of type I or type II censored data the statistics distributions for testing goodness-of-fit with the reliability models differ from the statistics distributions for testing goodness-of-fit by censored data without covariates. Therefore, the only way to support testing goodness-of-fit of the corresponding composite hypothesis is the application of the developed algorithm of simulation of the test statistics distributions and then estimation of the significance level by the simulated distribution. The simulation of the statistics distributions for the type I or type II censoring schemes is not complicated, as these censoring schemes are reproducible. But the simulation of randomly censored samples may cause difficulties, because in practice the distribution law of the censoring times is usually unknown. In addition, the censoring time distribution may depend on the covariates and it is necessary to take into account this dependence. To do this, the nonparametric algorithm of simulation of the randomly censored samples by using the semiparametric proportional hazards or accelerated failure time models has been developed.
Keywords
непараметрические критерии,
модифицированный критерий Колмогорова,
Крамера - Мизеса - Смирнова,
Андерсона - Дарлинга,
модель пропорциональных интенсивностей Кокса,
модель ускоренных испытаний,
цензурированные данные,
nonparametric goodness-of-fit tests,
Kolmogorov,
Cramer-von Mises-Smirnov and Anderson-Darling tests,
Cox proportional hazards model,
accelerated failure time model,
right censored dataAuthors
Chimitova Ekaterina V. | Novosibirsk State Technical University | ekaterina.chimitova@gmail.com |
Vedernikova Mariya A. | Novosibirsk State Technical University | vedernikova.m.a@gmail.com |
Galanova Natalia S. | Novosibirsk State Technical University | natalia.galanova@gmail.com |
Всего: 3
References
Чимитова Е.В., Ведерникова М.А. Проверка адекватности модели пропорциональных интенсивностей Кокса по случайно цензурированным выборкам // Сборник научных трудов НГТУ. Новосибирск: Изд-во НГТУ, 2010. № 4(62). С. 103-108.
Chimitova E., Galanova N. Application of the computer simulation technique for investigating problems of parametric AFT-model construction // Stochastic Modeling Techniques and Data Analysis Int. Conf.: Proc. Chania, Crete, Greece, 2010. P. 177-185.
Chimitova E., Chuyanova E., Galanova N., Vedernikova M. Computer approach to the choice of parametric ALT-models // Proc. of the Third Int. Conf. «Accelerated Life Testing, Reliability-Based Analysis and Design». Clermont-Ferrand, 2010. P. 111-116.
Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations // J. American Statistical Association. 1958. V. 53. P. 457-481.
Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука. 1983. 416 с.
Lawless J.F. Statistical Models and Methods for Lifetime Data. New Jersey: John Wiley and Sons, Inc., Hoboken. 2003. 630 p.
Reineke D., Crown J. Estimation of Hazard, Density and Survival Functions for Randomly Censored Data // J. Applied Statistics. 2004. V. 31. No. 10. P. 1211-1225.
Nikulin M., Lemeshko B., Chimitova E., Tsivinskaya A. Nonparametric goodness-of-fit tests for censored data // Proc. of the 7th Int. Conf. «Mathematical Methods in Reliability: Theory. Methods. Applications». Beijing, China, 2011. P. 817-823.
Hjort N.L. On Inference in Parametric Survival Data // International Statistical Review. 1992. V. 60. No. 3. P. 355-387.
Nair V. Plots and tests for goodness of fit with randomly censored data // Biometrika. 1981. V. 68. P. 99-103.
Kac M., Kiefer J., Wolfowitz J. On tests of normality and other tests of goodness of fit based on distance methods // Annals of Mathematical Statistics. 1955. V. 26. P. 189-211.
Лемешко Б.Ю., Чимитова Е.В., Плешкова Т.А. Проверка простых и сложных гипотез о согласии по цензурированным выборкам // Научный вестник НГТУ. 2010. № 4(41). С. 13-28.
Barr D.M., Davidson T. A Kolmogorov - Smirnov test for censored samples // Tech-nometrics. 1973. V. 15. No. 4.
Koziol J.A., Green S.B. A Cramer - von Mises statistic for randomly censored data // Biome-trika. 1976. V. 63. No. 3. P. 465-474.
Лемешко Б.Ю., Постовалов С.Н. Применение непараметрических критериев согласия при проверке сложных гипотез // Автометрия. 2001. № 2. С. 88-102.
Лемешко Б.Ю., Постовалов С.Н. О зависимости распределений статистик непараметрических критериев и их мощности от метода оценивания параметров // Заводская лаборатория. 2001. Т. 67. № 7. С. 62-71.
Лемешко Б.Ю., Маклаков А.А. Непараметрические критерии при проверке сложных гипотез о согласии с распределениями экспоненциального семейства // Автометрия. 2004. № 3. С. 3-20.
Лемешко Б.Ю., Лемешко С.Б., Постовалов С.Н. Мощность критериев согласия при близких альтернативах // Измерительная техника. 2007. № 2. С. 22-27.
Лемешко Б.Ю., Лемешко С.Б., Постовалов С.Н. Сравнительный анализ мощности критериев согласия при близких альтернативах. II. Проверка сложных гипотез // Сибирский журнал индустриальной математики. 2008. Т. 11. № 4(36). С. 78-93.
Лемешко Б.Ю., Лемешко С.Б. Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч. II // Измерительная техника. 2009. № 8. С. 17-26.
Лемешко Б.Ю., Лемешко С.Б. Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч. I // Измерительная техника. 2009. № 6. С. 3-11.
Лемешко Б.Ю., Лемешко С.Б., Никулин М.С., Сааидиа Н. Моделирование распределений статистик непараметрических критериев согласия при проверке сложных гипотез относительно обратного гауссовского закона // Автоматика и телемеханика. 2010. № 7. С. 83-102.
Сох D.R., Roy J. Regression models and life tables (with Discussion) // J. Royal Statistical Society. 1972. Series B. V. 34. P. 187-220.
Лемешко Б.Ю., Лемешко С.Б., Постовалов С.Н., Чимитова Е.В. Статистический анализ данных, моделирование и исследование вероятностных закономерностей. Компьютерный подход: монография. Новосибирск: Изд-во НГТУ, 2011. 888 с.
Meeker W.Q., Escobar L. Statistical Methods for Reliability Data. New York: John Wiley and Sons. - 1998.
Bagdonavicius V., Nikulin M. Accelerated life models: modeling and statistical analysis // Boca Raton, Florida: Chapman & Hall/CRC. 2002. 334 p.