Large language models as a tool for translator's practical activities: a review of foreign research projects | Yazyk i Kultura – Language and Culture. 2025. № 72. DOI: 10.17223/19996195/72/1

Large language models as a tool for translator's practical activities: a review of foreign research projects

Immediately after its market launch, ChatGPT rapidly captured the attention of users worldwide and became a sought-after tool among professionals engaged in text-related activities. Despite competition from numerous specialized online services, ChatGPT is gradually expanding its presence in the field of machine translation. The capabilities and limitations of this program have triggered discussions in various professional communities, including the academic circles. Research concerning ChatGPT and other LLM in terms of translation performance is currently limited and predominantly published abroad. However, the rapid advancement and dissemination of this technology necessitate the synthesis of such works, which will help crystallize the major trends in the development of the translation industry in the near future. The aim of the review is to show the results of research projects conducted by foreign scholars regarding the application of LLM in translation practices. The novelty of the study lies in identifying a spectrum of directions for the integration of artificial intelligence technologies into the translation process and in synthesizing the applied potential of neural network technologies, exemplified by the use of ChatGPT. The analysis is based on 12 printed and electronic sources in English and German, primarily dated 2023 and 2024, which focus on testing the aforementioned chatbot in translating texts of various genres into languages with both low and high resource bases, as well as utilizing different prompt designs. The synthesis of this material reveals universal trends and characteristics in the application of LLM as innovative, multifunctional, and continuously evolving tools for practicing translators. This paper reviews the approaches of specialists from China, Iran, the United Kingdom, the United States, and several European countries regarding the application of ChatGPT and other LLM in translation activities. These works include practical studies, methodological recommendations, and expert evaluation that reveal trends in the development of LLM. The coverage of a wide range of countries and genres of the reviewed scientific texts allows for the formation of a comprehensive and multifaceted understanding of the role of LLM in the market for digital products aimed at professional translation activities. The study employs conceptual-comparative and evaluative-critical types of analysis. Due to them the information particularly relevant to Russian digital translation studies is highlighted and synthesized. The review indicates that specialists confirm the efficiency of such LLM as ChatGPT in translation practice. They are capable of automating tasks related to terminology extraction from texts and performing high-quality machine translation, competing with well-known services of Google, DeepL and other large companies. It is noted that ChatGPT successfully copes with inter-stylistic translation. According to experts, the ability of LLM to transform the style and genre of the original text while preserving the essential key semantics in the secondary text will find wide application across various sectors of the economy. Furthermore, ChatGPT is applicable not only for addressing immediate translation tasks but also for automating pre-translation text analysis, including the extraction of terminology from the text, providing this lexicon with necessary linguistic information, and systematization. However, analysts stress the tendency of neural network systems to generate incorrect information, as well as the dependence of translation quality on the genealogical relationship and resource capacity of the national languages processed by these systems. To overcome these limitations, specialists are implementing projects to optimize the architectures of LLM and are developing prompt engineering within the translation industry. The enhancement of prompt bases should, as experts claim, follow the track of developing comprehensive prompts that contain exhaustive contextual information, including requirements regarding the genre-stylistic affiliation of the secondary text, its structural-organizational properties. The modifiers and add-ons of prompts should include reference translation patterns and requirements for machine post-editing of the obtained primary results. Thus, ChatGPT and other LLM pose competition to professional translators but cannot yet replace them. Nevertheless, specialized commercial and scientific-educational organizations are actively working to improve these systems. The rapid inhancement in quality within the field of natural language processing, along with the multifunctionality and adaptability of digital products, already requires translators to obtain new skills and demands that researchers identify promising study domains focused on understanding various aspects of artificial intelligence from a linguistic perspective. The authors declare no conflicts of interests.

Keywords

machine translation, neural network translation, natural language processing, large language models, artificial intelligence, ChatGPT, theoretical review

Authors

NameOrganizationE-mail
Alexandrov Oleg AnatolievichNational Research Tomsk State Universityolegaleksandrov79@gmail.com
Chistova Elena ViktorovnaV.V. Zhirinovsky University of World Civilizationskovelena82@mail.ru
Всего: 2

References

Wang S., Scells H., Zuccon G., Koopman B. Can ChatGPT Write a Good Boolean Query for Systematic Review Literature Search? // ArXiv e-prints. 2023. 19 p. URL: https://doi.org/10.48550/arXiv.2302.03495 (дата обращения: 12.12.2024).
Kung T.H., Cheatham M., Medenilla A., Sillos C., Leon L.D., Elepano C., Madriaga M., Aggabao R., Diaz-Candido G., Maningo J. Performance of Chatgpt on usmle: Potential for ai-assisted medical education using large language models // PLoS Digital Health. 2023. № 2 (2). 12 p. URL: https://doi.org/10.1371/journal.pdig.0000198 (дата обращения: 11.12.2024).
Oertner M. ChatGPT als Recherchetool? Fehlertypologie, technische Ursachenanalyse und hochschuldidaktische Implikationen // Bibliotheksdienst. 2024. № 58 (5). S. 259-297. URL: https://doi.org/10.1515/bd-2024-0042 (дата обращения: 02.12.2024).
Liebrenz M., Schleifer R., Buadze A., Bhugra D., Smith A. Generating scholarly content with ChatGPT: ethical challenges for medical publishing // The Lancet Digital Health. 2023. № 5 (3). P. e105-e106. URL: https://doi.org/10.1016/s2589-7500(23)00019-5 (дата обращения: 09.12.2024).
Becker J. J. Konnen Chatbots Romane schreiben? Der Einfluss von KI auf kreatives Schrei-ben und Erzahlen // KI: Text. Diskurse uber KI-Textgenerationen. Berlin : De Gruyte, 2024. S. 83-99.
Doshi A.R., Hauser O.P. Generative AI enhances individual creativity but reduces the collective diversity of novel content // Science Advances. 2024. № 10. URL: https://doi.org/10.1126/sciadv.adn5290 (дата обращения: 23.12.2024).
Анахов С.В. AI и GPT: достижения, вызовы, перспективы // Новые информационные технологии в образовании и науке. 2024. № 13. С. 9-28.
Омелик А.А. ИИ в сфере культуры и искусства: обзор публикаций // Социология искусственного интеллекта. 2024. Т. 5, № 1. С. 42-48.
Бермус А.Г. Преимущества и риски использования ChatGPT в системе высшего образования: теоретический обзор // Педагогика. Вопросы теории и практики. 2024. Т. 9, № 8. С. 776-787.
Бермус А.Г., Сизова Е.В. Педагогические, лингводидактические и психологические условия использования ChatGPT в системе высшего образования: систематический обзор // Научно-методический электронный журнал «Концепт». 2024. № 11. С. 150166.
Pugachev A. A., Kharchenko A V., Sleptsov N.A. Transforming the future: a review of artificial intelligence models // RUDN Journal of Studies in Literature and Journalism. 2023. Т. 28, № 2. Р. 355-367.
Белов С.Д., Зрелова Д.П., Зрелое П.В., Кореньков В.В. Обзор методов автоматической обработки текстов на естественном языке // Системный анализ в науке и образовании. 2020. № 3. С. 8-22. URL: http://sanse.ru/download/401 (дата обращения: 13.12.2024).
Ширяева А.А., Новицкая И.В. Преимущества и недостатки использования нейросетей для обработки естественного языка (NLP) // Язык и культура. 2024. № 67. С. 89101. doi: 10.17223/19996195/67/5 (дата обращения: 14.12.2024).
Сорокина С.Г. Интеллектуальная обработка текстовой информации: обзор автоматизированных методов суммаризации. Виртуальная коммуникация и социальные сети. 2024. Т. 3, № 3. С. 203-222. doi: 10.21603/2782-4799-2024-3-3-203-222 (дата обращения: 05.12.2024).
Czulo O. Trotz ChatGPT, DeepL und Co: Translator:innen geht die Arbeit nicht aus // Linguistische Werkstattberichte. 2023. doi: 10.58079/qwl1 (дата обращения: 07.12.2024).
Lyu Q., Tan J., Zapadka M.E., Ponnatapura J., Whitlow C.T., Niu C., Wang G., Myers K.J. Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential // Vis.Comput. Ind. Biomed. Art. 2023. № 6. Р. 9. doi: 10.1186/s42492-023-00136-5 (дата обращения: 25.12.2024).
Tang G., Ronchen Ph., Sennrich R., Nivre J. Revisiting Negation in Neural Machine Translation // Transactions of the Association for Computational Linguistics. 2021. № 9. P. 740-755. doi: 10.1162/tacl_a_00395 (дата обращения: 15.11.2024).
Muegge U. Terminology Extraction for Translation and Interpretation Made Easy: How to use ChatGPT and other low-cost, web-based programs to create terminology extraction lists and glossaries quickly and easily. Uwe Muege, 2023. 84 p.
Farquhar S., Kossen J., Kuhn L. Detecting hallucinations in large language models using semantic entropy // Nature. 2024. № 630. P. 625-630. doi: 10.1038/s41586-024-07421-0 (дата обращения: 28.11.2024).
Xu W., Agrawal S., Briakou E, Martindale M.J., Carpuat M. Understanding and Detecting Hallucinations in Neural Machine Translation via Model Introspection // Transactions of the Association for Computational Linguistics. 2023. № 11. P. 546-564. doi: 10.1162/tacl_a_00563 (дата обращения: 12.11.2024).
Wenxiang J., Wenxuan W., Jentse H., Xing W., Zhaopeng T. Is ChatGPT A Good Translator? A Preliminary Study // ArXiv e-prints. 2023. doi: 10.48550/ arXiv.2301.08745 (дата обращения: 27.12.2024).
Jiao H., Peng B., Zong L., Zhang X., Li X. Gradable ChatGPT Translation Evaluation // ArXiv e-prints. 2024. URL: https://arxiv.org/html/2401.09984v2 (дата обращения: 09.12.2024).
Kojima T., Gu S.S., Reid M., Matsuo Y., Iwasawa Y. Large Language Models Are Zero-Shot Reasoners // ArXiv e-prints. 2023. URL: https://arxiv.org/pdf/2205.11916v4 (дата обращения: 17.11.2024).
Shao Zh., Gong Y., Shen Y., Huang M., Duan N., Chen W. Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models // Proceedings of the 40th International Conference on Machine Learning. Honolulu, Hawaii : JMLR.org., 2023. P. 30706-30775.
Reynolds L., McDonell K. Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm // CHI EA’21: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. New York : Association for Computing Machinery, 2021 doi: 10.1145/3411763.3451760 (дата обращения: 18.12.2024).
Puppel M., Borg C. Evaluating ChatGPT’s performance in creative text translation for communication: A case study from English into German // Media and Intercultural Communication: A Multidisciplinary Journal. 2025. № 3 (1). Р. 1-27. doi: 10.22034/mic.2024.480506.1023 (дата обращения: 26.12.2024).
Nooshin P., Shler E.S. Machine Translation with Large Language Models: Prompt Engineering for Persian, English, and Russian Directions // ArXiv e-prints. 2024. URL: https://arxiv.org/abs/2401.08429 (дата обращения: 09.12.2024).
Tan Z., Wang S., Yang Z., Chen G., Huang X., Sun M., Liu Y. Neural machine translation: A review of methods, resources, and tools // AI Open. 2020. Р. 5-21. doi: 10.1016/j.aiopen.2020.11.001 (дата обращения: 03.12.2024).
Casas N., Costa-juss'a M.R. et al. Linguistic knowledge-based vocabularies for Neural Machine Translation. Natural Language Engineering. UK: Cambridge University Press, 2018. № 1 (1). Р. 1-27.
 Large language models as a tool for translator's practical activities: a review of foreign research projects | Yazyk i Kultura – Language and Culture. 2025. № 72. DOI: 10.17223/19996195/72/1

Large language models as a tool for translator's practical activities: a review of foreign research projects | Yazyk i Kultura – Language and Culture. 2025. № 72. DOI: 10.17223/19996195/72/1

Download full-text version
Counter downloads: 6