О pnBext проективных абелевых p-группах | Вестник Томского государственного университета. Математика и механика. 2017. № 46. DOI: 10.17223/19988621/46/3

О pnBext проективных абелевых p-группах

Вводится понятие pnBext проективных абелевых p-групп и доказывается, что эти группы образуют собственный подкласс в классе всех n-сбалансированных проективных p-групп. Данное утверждение улучшает соответствующий полученный результат, опубликованный Кифом и Данчевым в журнале Houston J. Math. (2012).

On pnBext projective abelian p-groups.pdf 1. Introduction and Background Everywhere in the text of this brief paper our groups are p-primary abelian, where p is a fixed prime for the duration of the article. The undefined explicitly below notions and notations are in agreement with [5]. For instance, a group G is called balanced projective if the equality Bext(G, X) = {0} holds for all groups X. In order to generalize this, imitating [3], for any integer n > 0, we say that the short exact sequence 0 ^ X ^ Y ^ G ^ 0 is n-balanced exact if it represents an element of pnBext(G, X). Thus we will say that a group G is n-balanced projective provided every such n-balanced exact sequence splits. Evidently, these two notions coincide when n = 0. It is worthwhile noticing that certain non-trivial properties of these groups are given in [3] (see also [4]). These ideas lead us to the next new concept: Definition 1.1. Let n > 0 . A group G is said to be pnBext-projective if (VX), pn - Bext(G, X) = {0}. The aim of this note is to prove that each n-balanced projective group is pn yields Bext-projective but the converse fails. We close the work with a specific question arisen from unexpected difficulties in the proof of the central statement. 2. Main Result and Problem Theorem 2.1. Suppose that G is a group and n 2 does there exist a pnBext-projective group that is not n-totally projective? Resuming, we have restricted our attention only on n = 1, though essentially the same argument works for larger values of n (see cf. [1] and [2] too). In fact, last argument stated above asserts that any element of pn Bext( A, X )will be n-balanced exact, so that every group which is projective with respect to the collection of n-balanced exact sequences will also be projective with respect to the functor pnBext. The second assertion then implies that there are n-balanced exact sequences that are not elements of pnBext(A, X). Besides, notice that the totally projective (i.e., the balanced projective) groups are exactly p0Bext-projective groups, and there are an abundance of them. Nevertheless, it is actually not at all clear whether there are enoughpnBext-projectives whenever n > 0. So, the following homological question is of some interest: Problem. Is it true that the collection of n-balanced exact sequences form the largest subfunctor of pnBext which does have this important homological property?

Ключевые слова

pnBext проективность, n-сбалансированная проективность, pnBext projectives, сбалансированная проективность, n-balancedprojectives, balancedprojectives

Авторы

ФИООрганизацияДополнительноE-mail
Данчев Петр В.Пловдивский государственный университетpvdanchev@yahoo.com
Всего: 1

Ссылки

Fuchs L. (2015) Abelian Groups. Switzerland: Springer.
Hill P. (1968) A summable Cn-group. Proc. Amer. Math. Soc. 23. pp. 428-430.
Richman F. and Walker E. (1979) Valuated groups. J. Algebra. 56. pp. 145-167.
Keef P. and Danchev P. (2012) On properties of n-totally projective abelian p-groups. Ukrain. Math. J. 64. pp. 875-880.
Keef P.W. and Danchev P.V. (2012) On n-simply presented primary abelian groups. Houston J. Math. 38. pp. 1027-1050.
Danchev P.V. and Keef P.W. (2010) n-Summable valuated pn-socles and primary abelian groups. Commun. Algebra. 38. pp. 3137-3153.
Danchev P.V. (2012) Valuated pn-socles and C^ n-summable abelian p-groups. Pioneer J. Math. and Math. Sci. 6. pp. 233-249.
 О p<sup>n</sup>Bext проективных абелевых p-группах | Вестник Томского государственного университета. Математика и механика. 2017. № 46. DOI: 10.17223/19988621/46/3

О pnBext проективных абелевых p-группах | Вестник Томского государственного университета. Математика и механика. 2017. № 46. DOI: 10.17223/19988621/46/3