Молекулярно-динамическое моделирование разделения наножидкости с помощью наномембран
Методом молекулярной динамики изучены процессы разделения наножид-костей в наномембранах. Исследовано влияние пористости мембран, типа укладок гранул мембран, характерных размеров пор и диаметров наноча-стиц, а также плотности несущего флюида на скорость разделения смесей. Показано, что варьируя параметры фильтруемой наножидкости и мембраны можно управлять скоростью разделения.
Molecular dynamics modeling of nanofluid separation in nanomembranes.pdf В последние годы активно обсуждается возможность использования нанопо-ристых мембран для разделения смесей газов [1-3]. И здесь для изучения процессов переноса, наряду с экспериментом, активно применяется метод молекулярной динамики (МД) [4-6]. Так, в [7] мембрана моделировалась трехмерной сетью пор. Изучался перенос и адсорбция молекул газов, была найдена оптимальная конфигурация пористой структуры для обеспечения наиболее эффективного разделения газов. В работе [8] исследована эффективность разделения смесей газов O2/N2, CO2/N2 в трех цеолитовых мембранах. Было установлено, что газы, имеющие сходные адсорбционные характеристики и размеры молекул, плохо разделяются. При изучении разделения смеси H2/CO [9] в нанопористых углеродных мембранах показано, что наибольшее влияние на скорость разделения смеси оказывает характерный размер поры. Наконец, стоит упомянуть работу [10], где изучено разделение выхлопных газов в нанопористых углеродных мембранах при больших температурах. В частности, была найдена оптимальная плотность смеси для эффективного разделения газов при температуре 673K. Одновременно в связи с бурным развитием микроэлектромеханических систем и нанотехнологий различного назначения быстро растет интерес к процессам переноса в наножидкостях [11-13]. Разделение наножидкостей с помощью нано-мембран также представляет большой интерес. В качестве примера использования такого разделения можно привести системы очистки воздуха и воды от вирусов, которые по размерам являются наночастицами. С другой стороны, нанопристые мембраны - типичный инструмент разделения различных веществ в живых организмах. Целью данной работы является выявление основных факторов, влияющих на эффективность разделения наножидкости при ее прохождении через нанопори-стую мембрану. Изучено влияние пористости мембраны, типа укладки гранул мембраны, отношения размеров наночастиц к размерам гранул, отношения масс и размеров компонентов флюида, а также плотности несущего флюида на скорость разделения смесей. Для моделирования использовался алгоритм метода МД, являвшийся обобщением алгоритма для системы твердых сфер [14-17]. Пористые мембраны моделировались регулярными укладками твердых частиц (гранул). В данной работе представлены результаты моделирования системы, в которой гранулы имели диаметр 4d, а наночастицы - 5d, где d - диаметр молекулы несущего флюида. Схематическая иллюстрация моделируемой системы представлена на рис. 1. Система представляла собой ячейку-параллелепипед с твердыми стенками. Ее левая часть (область 1) в начальный момент заполнялась наножидкостью. Несущим компонентом могли быть и жидкость, и газ. В данной работе представлены результаты для случая, когда несущим являлся плотный газ. В типичном расчете участвовало порядка десяти тысяч молекул. Проводились расчеты и с существенно большим числом молекул, полученные результаты при этом практически не менялись. Объемная концентрация наночастиц изменялась в пределах от одного до двадцати процентов. Естественно, в данной постановке можно изучать и транспорт бинарной смеси газов. О о о о ^^Ьо
Ключевые слова
наночастицы,
пористая среда,
мембрана,
наножид-кость,
молекулярная динамика,
разделение наножидкости,
nanoparticles,
porous medium,
nanofluid separation,
membrane,
nanofluid,
molecular dynamics,
nanofluid separationАвторы
Рудяк Валерий Яковлевич | Новосибирский государственный архитектурно-строительный университет | доктор физико-математических наук, профессор, зав. кафедрой теоретической механики | valery.rudyak@mail.ru |
Андрющенко Владимир Андреевич | Новосибирский государственный архитектурно-строительный университет; Российский технологический центр компании Бейкер Хьюз | магистр по направлению «теплофизика», научный сотрудник | vladimir.andrushenko@gmail.com |
Всего: 2
Ссылки
Bernardo P., Drioli E., Golemme G. Membrane Gas Separation: A Review/State of the Art // Ind. Eng. Chem. Res. 2009. V. 48. P. 638-4663.
Chen F., Mourhatch R., Tsotsis T.T., Sahimi M. Pore network model of transport and separation of binary gas mixture in nanoporous membranes // J. Membrane Science. 2008. V. 315. P. 48-57.
Rajabbeigi N., Tsotsis T.T., Sahimi M. Molecular pore-network model for nanoporous materials. II: Application to transport and separation of gaseous mixtures in silicon-carbide membranes // J. Membrane Science. 2009. V. 345. P. 323-330.
Норман Г.Э., Стегайлов В.В. Стохастическая теория метода классической молекулярной динамики // Математическое моделирование. 2012. Т. 24, № 6. С. 3-44.
Норман Г.Э., Писарев В.В. Молекулярно-динамический анализ кристаллизации переохлажденного расплава алюминия // Журнал физической химии. 2012. Т. 86. № 9. С. 1578-1583.
Бубенчиков М.А., Потекаев А.И., Бубенчиков А.М. Три фундаментальные задачи молекулярной статистики // Изв. вузов. Физика. 2013. Т. 56 (3). С. 94-100.
Xu L., Sahimi M., Tsotsis T.T. Nonequilibrium molecular dynamics simulation of transport and separation of gas mixtures in nanoporos materials // Physical Review E. 2000. V. 62. № 5. P. 6942-6948.
Jia W., Murad S. Separation of gas mixtures using a range of zeolite membranes: A molecular-dynamics study // J. Chemical Physics. 2005. V. 122, 234708. P. 1-11.
Wu Z., Liu Z., Wang W., Fan Y., Xu N. Non-equilibrium molecular dynamics simulation on permeation and separation of H2/CO in nanoporous carbon membranes // Separation and Purification Technology. 2008. V. 64. P. 71-77.
Kozachok M.V. Equilibrium molecular dynamics and mean first passage time analysis of the separation of exhaust gases at high temperatures by silica nanoporous membranes // Modelling and Simulation in Materials Science and Engineering. 2010. V. 18, 025009.
Рудяк В.Я., Белкин А.А. Моделирование коэффициентов переноса // Наносистемы: Физика, Химия, Математика. 2010. Т. 1. № 1. С. 156-177.
Rudyak V.Ya., Belkin A.A. Transport processes of nanoparticles in gases and liquids // Advanced Structured Materials. 2013. V. 4. P. 135-168.
Rudyak V.Ya. Viscosity of nanofluids. Why it is not described by the classical theories // Advances in Nanoparticles. 2013. V. 2. P. 266-279.
Рудяк В.Я., Харламов Г.В., Белкин А.А. Автокорреляционная функция скорости наночастицы в молекулярной системе твердых сфер // Письма в ЖТФ. 2000. Т. 26. № 13. С. 29-36.
Рудяк В.Я., Харламов Г.В., Белкин А.А. Диффузия наночастиц и макромолекул в плотных газах и жидкостях // ТВТ. 2001. Т. 31, № 2. С. 283-291.
Андрющенко В.А., Рудяк В.Я. Моделирование самодиффузии молекул флюида в пористых средах // Докл. АН ВШ РФ. 2010. Т. 15. № 2. С. 6-13.
Andryuschenko V.A., Rudyak V.Ya. Media self-diffusion coefficient of molecular fluid in porous media // Deffect and Diffusion Forum. 2011. V. 312-315. P. 417-422.
Димов С.В., Кузнецов В.В., Рудяк В.Я., Тропин Н.М. Экспериментальное изучение фильтрации микросуспензии в высопроницаесой пористой среде // Изв. РАН. Механика жидкости и газа. 2012. № 2. С. 52-61.