Исследование неизотермической двумерной фильтрации в слоистом пласте | Вестник Томского государственного университета. Математика и механика. 2022. № 75. DOI: 10.17223/19988621/75/9

Исследование неизотермической двумерной фильтрации в слоистом пласте

Исследована задача о нестационарном температурном поле при двумерной фильтрации жидкости в слоистом пласте с учетом баротермического эффекта, радиальной и вертикальной неоднородности по проницаемости. Приводятся результаты сравнения аналитического и численного решения для температуры притекающей из пласта жидкости для двух различных моделей неоднородности пласта. Из полученных результатов следует, что для расчета нестационарной температуры в слоистом пласте с радиальной неоднородностью в прискважинной зоне необходимо использовать двумерную модель фильтрации для корректного учета перетоков флюида между слоями.

Investigation of nonisothermal two-dimensional filtration in multylayer reservoir.pdf Методика интерпретации данных термогидродинамических исследований (ТГДИ) основывается на моделях одномерной фильтрации жидкости в однородном по вертикали пласте [1-4]. На самом деле пласт может быть существенно слоистым и каждый слой может иметь свои индивидуальные параметры радиальной неоднородности. Характер течения жидкости к эксплуатационной скважине в слоистом пласте зависит от параметров слоев. В связи с этим есть необходимость исследования влияния перетока жидкости между пропластками на нестационарную температуру притекающей в скважину жидкости. Совершенствование моделей термогидродинамических процессов и методов определения фильтрационных параметров пластовых систем является актуальным и имеет важное значение для практики скважинной термометрии. Изучению термогидродинамических процессов с учетом баротермического эффекта в пластах посвящены многочисленные публикации отечественных и зарубежных исследователей [5-10]. В работе [5] представлена численная модель для оценки проницаемости и скин-фактора пласта по температурным замерам в скважине. Установлено, что температурный отклик чувствителен к радиусу и проницаемости зоны загрязнения пласта. Аналогичная модель рассматривается в работе [6], где показано использование численной модели для интерпретации полевых данных. Сделан вывод, что для корректной интерпретации термогидродинамических исследований пласта требуется привлекать дополнительную информацию о предыстории работы скважины. В работе [7] рассматривается модель термогидродинамического процесса при фильтрации жидкости в квазистационарном поле давления. Пропластки слоистого пласта при этом считаются гидродинамически изолированными, фильтрация жидкости в них одномерная. Температур- 1 Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (соглашение № 075-11-2021-061). Исследование неизотермической двумерной фильтрации в слоистом пласте 101 ное поле двумерное, на модельных примерах демонстрируется важность учета вертикальной теплопроводности. В работе [8] представлена термогидродинамическая модель, которая позволяет учесть нестационарность поля давления при исследовании баротермического эффекта, слоистую неоднородность залежи, вклад теплообмена пласта с окружающими породами, вклад анизотропии пласта и окружающих пород в температурное поле, а также вертикальные распределения температуры в пласте и окружающих породах. Авторами [9] методом регуляризации решается обратная задача об определении фильтрационных параметров слоистого пласта по измеренным давлению и температуре в скважине после пуска ее в работу. Используются одномерные модели тепломассопереноса в пласте и скважине, перетоки между отдельными слоями не рассматриваются. В работе [10] представлена аналитическая модель для расчета температурного поля в слоистом пласте с учетом перетоков между слоями. Для расчета нестационарной температуры притекающей жидкости из отдельного пропластка предлагается использовать одномерную модель фильтрации, а для учета перетоков использовать поправку к дебиту из этого пропластка, учитывающую вертикальную и радиальную неоднородности пласта, на основе алгоритма, описанного в [11]. В работе [11] отмечается, что поправки к дебиту справедливы для достаточно больших времен эксплуатации скважины. Как показывает обзор опубликованных работ, несмотря на то, что нестационарные температурные поля при фильтрации в насыщенной пористой среде с учетом термодинамических эффектов достаточно хорошо исследованы как в России, так и за рубежом, остается слабо изученным вопрос, связанный с влиянием перетоков между отдельными пропластками в слоистом пласте на измеряемую в скважине нестационарную температуру. Этот вопрос особенно важен при зондировании прискважинной зоны пласта, при определении границ изменения проницаемости в пласте по нестационарной температуре в скважине. В данной работе исследуется численная модель нестационарной неизотермической двумерной фильтрации жидкости в слоистом пласте с учетом радиальной и вертикальной неоднородности по проницаемости. Постановка задачи Приняты следующие допущения: • пласт горизонтальный, пористый, насыщен однофазной слабосжимаемой жидкостью; • массо- и теплоперенос (конвективный и кондуктивный) в радиальном и вертикальном направлениях; • учитывается зависимость проницаемости от координат r и z. Давление в пласте рассчитывается из уравнения пьезопроводности [12]: в* dp =1 _д_(rkr_Щ+_Ц дР_ dt r dr ^ ц dr) dz ^ ц dz rw < r < R, 0 < z < h , (1) где в - упругоемкость насыщенного жидкостью пласта (в = фв/ + РД; р - давление; t - время; r - радиальная координата, расстояние в пласте от оси скважины; z - вертикальная координата; kr, kz - проницаемость пласта по r и по z; ц - вязкость флюида; rw - радиус скважины; R - радиус контура питания пласта. 102 Д.Ф. Исламов, А.Ш. Рамазанов Здесь проницаемость k(r,z) является функцией координаты [12] k(r,z)= zti < z ^ zbi, zti^ z ^ zbi, (2) kdi Г < rdi где k0i - проницаемость дальней, ненарушенной зоны i-го пропластка; kdi - проницаемость нарушенной зоны i-го пропластка; rd - радиус границы зоны нарушения i-го пропластка; zti, zbi - кровля и подошва i-го пропластка. Давление в начальный момент времени Н=0 = р0. () Давление на внешней границе пласта p\\r=R = P0. Граничные условия на стенке скважины в интервале перфорации Pw(t)=pl=r; Q (t )=2л/V ^ dp dz . (4) (5) (6) Здесь pw - давление в скважине; Q - суммарный дебит жидкости из пласта. Внутренняя граница rw (вне интервала перфорации), а также верхняя и нижняя границы пласта непроницаемые; ' ' ' () ur = 0, r lr=rw uz = 0, Z\\z = zt uz = 0, z lz=zb где ur, uz - радиальная и вертикальная составляющие скорости фильтрации. Изменение температуры в пласте за счет конвекции, теплопроводности и баротермического эффекта описывается уравнением [1] Cres dT дТ дТ -^-+ur-+uz - = Cf dt r dr z dz 1 d_ r dr f X r дТЛ v Cf ar. d dz cT VCf dz j dp dp dp +ФЛ--eur --euz- . dt dr dz (8) где Cres - объемная теплоемкость насыщенной жидкостью пористой среды (Cres = фС/Pf + (1-ф)с,рх); Cf - объемная теплоемкость флюида (Cf = Cf pf); Xr, Xz - теплопроводность насыщенного жидкостью пласта по r и по z; е, п - коэффициент Джоуля - Томсона и адиабатический коэффициент для флюида. В качестве начального условия и условия на внешней границе пласта задается геотермическое распределение температуры: Tt=o = То; () T\\r =R = Т0. Граничное условие на стенке скважины (r = rw): (10) -X. сіТ_ dr = Q (w (z, t)-Т1=rw ). (11) Здесь Тѵ - средняя по сечению температура в стволе скважины; Q - коэффициент теплообмена между жидкостью в стволе скважины и стенкой скважины. Скорость фильтрации определяется из закона Дарси: k_ dp ц dr (12) = kz dp ц dz Исследование неизотермической двумерной фильтрации в слоистом пласте 103 Методика решения Задача (1) - (13) решена численно. Дискретизация уравнений осуществлена методом контрольного объема. Сетка в радиальном направлении неравномерная, сгущающаяся к скважине, а в направлении вертикальной координаты z равномерная. Полученные системы линейных алгебраических уравнений для давления и температуры решаются итерационным методом Гаусса - Зейделя [13]. Корректность численного решения проверена путем сравнения с известными аналитическими решениями [1, 15] и с результатами моделирования в программном пакете Ansys. Для проверки, разработанной модели была создана идентичная модель в программном пакете Ansys. Моделируется случай отбора жидкости из неоднородного по проницаемости пласта при постоянном дебите. Расчетная область состоит из пяти чередующихся горизонтальных пропластков (рис. 1). Толщина каждого пропластка 2 м. В центральной части, в интервале 4 < z < 6 м, находится пропласток с нарушенной прискважинной зоной. Радиус нарушения rd = 0.5 м. R w r d Непроницаемые горные породы k) kd k) k) Непроницаемые горные породы z Рис. 1. Модель слоистого пласта (k0 = 100-10-15 м2, kd = 10-10-15 м2) Fig. 1. Layered reservoir model (k0 = 100-10-15 m2, kd = 10-10-15 m2) Так как модель двумерная, сравнению подверглись профили температур: 1 - через 1 ч, 2 - через 10 ч после начала отбора (Непрерывные серые линии на рис. 2 соответствуют результатам численного решения, а черные точки соответствуют Ansys). Из графиков на рис. 2 видно: • Профили температур, рассчитанные численно и в Ansys полностью повторяют друг друга. Максимальное отклонение между кривыми не превышает 0.01 °С, что приемлемо для моделирования температурных полей в пласте. Совпадение было достигнуто при количестве разбиений по радиальной координате Nr = 1000, при количестве разбиений по вертикальной координате Nz = 100 и при постоянном шаге по времени At = 1 с. • В распределении температуры по толщине пласта видны характерные признаки перетока из среднего пропластка в соседние пропластки. Переток приводит к немонотонному распределению температуры в пределах среднего пропластка с загрязненной прискважинной зоной. Д.Ф. Исламов, А.Ш. Рамазанов 104 AT, °C 0 0.1 0.2 0.3 0.4 Рис. 2. Профили температуры на стенке скважины (r = rw) Fig. 2. Temperature profiles on the borehole wall (r = rw) • С увеличением времени притока различие в изменении температуры по толщине пласта уменьшается. Для уверенного выделения радиальной неоднородности, которая приводит к перетоку в соседние пропластки, необходимо регистрировать нестационарные температурные профили температуры в начальный период притока. Результаты сравнения с аналитической моделью Результаты расчетов на численной двумерной модели сравниваются с расчетами по аналитической модели, описанной в [10]. Была проведена серия расчетов для двух моделей пласта: 1 - модель радиально неоднородного, но однородного по z пласта (рис. 3); 2 - модель слоистого пласта с радиально неоднородными пропластками (рис. 4). R _ Непроницаемые горные породы kd, rd k> Непроницаемые горные породы r Рис. 3. Модель однородного по вертикали пласта Fig. 3. Vertical homogeneous reservoir model z Исследование неизотермической двумерной фильтрации в слоистом пласте R rw г Непроницаемые горные породы kd1, S1, гл k0 Слой 1 ke, S3, rd3 k Слой 2 kd2, S2, rd2 k0 Слой 3 Непроницаемые горные породы 105 Рис. 4. Модель слоистого пласта Fig. 4. Layered reservoir model Для первой модели вертикальная фильтрация в пласте, перетоки исключаются, а для 2-й модели пласта перетоки возможны. Расчеты для первой модели приведены на рис. 5 (1 - аналитическое решение [10], 2 - численное решение) для параметров модели, приведенных в табл. 1. Сравниваются графики изменения температуры притекающей жидкости. Т аблица 1 Параметры, используемые в расчетах Параметр Значение Дебит - Q, м3/сут 100 Начальное давление - P0, МПа 20.265 Начальная температура - T0, °C 10 Проницаемость дальней зоны - k0, м2 100-10-15 Проницаемость прискважинной зоны - kd, м2 10-10-15 Радиус нарушенной зоны - rd, м 0.5 Скин-фактор - s 0 Толщина - h, м 5 Пористость - ф 0.2 Общая сжимаемость - в , 1/Па 3-10-10 Плотность скелета пласта - ps, кг/м3 2200 Плотность жидкости - pf, кг/м3 900 Теплоемкость скелета пласта - cs, Дж/кг-К 800 Теплоемкость жидкости - cf, Дж/ кг-К 2000 Коэффициент Джоуля-Томсона - s, К/МПа 0.4 Коэффициент адиабатического расширения - п, К/МПа 0.16 Вязкость - р, Па-с 0.001 Радиус скважины - rw, м 0.1 Радиус контура питания - R, м 100 Как и ожидалось, аналитическая модель в случае одномерной фильтрации в однородном по вертикали пласте (при отсутствии перетоков по вертикали) верно описывает поведение нестационарной температуры. Результаты расчетов по чис- Д.Ф. Исламов, А.Ш. Рамазанов 106 ленному и аналитическому решениям близки, для малых времен отличаются не более чем на 0.2 градуса и практически совпадают на поздних временах. Излом на кривых объясняется радиальной неоднородностью проницаемости [1]. Рис. 5. Сопоставление численного решения с аналитическим: 1 - аналитическое решение; 2 - численное решение Fig. 5. Comparison of the (1) analytical and (2) numerical solutions Сравнительные расчеты для модели слоистого пласта приведены на рис. 6 - 8 для параметров модели из табл. 1. Пласт по вертикали разбит на три равных слоя толщиной 2 м. Радиусы rd, проницаемости нарушенной зоны и дальней зоны слоев (kd, k0) задавались как в табл. 2. Скин-факторы для отдельных слоев, необходимые для расчетов по аналитическому решению, рассчитывались по формуле Хоукинса [14] (13) Т аблица 2 Параметры, используемые в расчетах Параметр Значение Проницаемость дальней зоны - k0, м2 100-10-15 Проницаемость прискважинной зоны - kd1, м2 50-10-15 Проницаемость прискважинной зоны - kd2, м2 55-10-15 Проницаемость прискважинной зоны - kd3, м2 45-10-15 Скин-фактор - і! 1.61 Скин-фактор - і2 0.9 Скин-фактор - і3 2.19 Радиус прискважинной зоны - rd1, м 0.5 Радиус прискважинной зоны - rd2, м 0.3 Радиус прискважинной зоны - rd3, м 0.6 107 Исследование неизотермической двумерной фильтрации в слоистом пласте Время, ч Рис. 6. Сопоставление численного решения с аналитическим для слоя 1: 1 - аналитическое решение; 2 - численное решение Fig. 6. Comparison of the (1) analytical and (2) numerical solutions for layer 1 Время, ч Рис. 7. Сопоставление численного решения с аналитическим для слоя 2: 1 - аналитическое решение; 2 - численное решение Fig. 7. Comparison of the (1) analytical and (2) numerical solutions for layer 2 Алгоритм следующий: 1) Рассчитываются поля давления и температуры по численной модели с заданными параметрами k0, kd, rd. 2) Затем по формуле Хоукинса (13) рассчитываем скин-факторы отдельных слоев. 3) Полученные скин-факторы используются для расчета полей давления и температуры по аналитическому решению [10]. Сравниваются графики изменения во времени температуры притекающей из слоя жидкости. В численном решении рассчитывается среднемассовая по толщине соответствующего слоя температура для того, чтобы учесть неоднородность дебита по толщине слоя из-за внутрипластовых перетоков. 108 Д.Ф. Исламов, А.Ш. Рамазанов Время, ч Рис. 8. Сопоставление численного решения с аналитическим для слоя 3: 1 - аналитическое решение; 2 - численное решение Fig. 8. Comparison of the (1) analytical and (2) numerical solutions for layer 3 Рассчитанные численно и по аналитическому решению дебиты слоев представлено в табл. 3, отличие между ними менее 10%, что вполне приемлемо для практики. Сравнение дебитов Т аблица 3 Параметр Значение Численный расчет Аналитическое решение [101 Разница, % Дебит слоя 1, м3/сут 30.57 32.63 6.74 Дебит слоя 2, м3/сут 38.76 39.26 1.29 Дебит слоя 3, м3/сут 30.67 28.12 8.31 Как видно из рисунков, результаты расчетов температуры по аналитическому [10] и по численному решениям значительно отличаются. До и после излома графики температуры имеют разные наклоны к оси времени. Зная угловой коэффициент a линейных участков изменения температуры до и после излома, рассчитаны проницаемости ближней и дальней зоны [1] k = Щ (14) 4nnla Здесь Ql - дебит слоя, hl - толщина слоя, a - угловой коэффициент линейного участка изменения температуры. Радиус прискважинной зоны рассчитан по следующей формуле [1] rd = rw + C_QQt_ Cres пП1 (15) Здесь td - время, соответствующее точке пересечения аппроксимирующих прямолинейные участки изменения температуры прямых. Исследование неизотермической двумерной фильтрации в слоистом пласте 109 Проницаемости ближней и дальней зон (kd и k0) и радиус прискважинной зоны (rd), найденные по этому алгоритму по среднемассовым температурам для отдельных слоев из численного решения, представлены в табл. 4. Сравнение проницаемостей Т аблица 4 Слой kd, м2-10-15 Разница с заданным kd, % k0, м2-10 15 Разница с заданным k0, % г* м Разница с заданным rd, % слой 1 51.24 2.49 85.8 14.2 0.48 4.66 слой 2 65.28 18.69 108.8 00 00 0.32 7.42 слой 3 51.04 13.43 86.1 13.9 0.62 3.72 Значение проницаемости дальней зоны для слоев 1 и 3 занижено на 14%, а для слоя 2 завышено на 9% по сравнению с заданными величинами k0. Наилучший результат показал расчет радиуса зоны загрязнения. Рассчитанные значения отличается от заданных всего лишь на 2 см, что соответствует погрешности от 4 до 7%. Расхождение в скорости изменения температуры в моделях объясняется прежде всего тем, что в аналитической модели поток жидкости считается одномерным вдоль всего слоя, дебит слоя и скорость фильтрации для учета перетока увеличиваются или уменьшаются на всем протяжении по г. А как показали расчеты на численной модели, перетоки между слоями наблюдаются только в прискважинной зоне пласта, а на удалении от нарушенной зоны в однородной по толщине зоне пласта наблюдается одномерный поток с постоянной для всех слоев скоростью фильтрации и, следовательно, с одинаковым темпом изменения температуры во времени. Заключение Из анализа полученных результатов следует, что: 1. Наличие радиальной неоднородности проницаемости в прискважинной зоне слоистого пласта приводит к перетокам жидкости между слоями, что отражается на скорости изменения температуры притекающей из отдельных слоев жидкости. 2. Нестационарные профили температуры по толщине слоистого пласта при малых временах притока содержат информацию о перетоках между слоями, обусловленными радиальной неоднородностью в прискважинной зоне пласта. 3. Перетоки между слоями приводят к большим погрешностям при решении обратной задачи по оценке распределения проницаемости в пласте по данным нестационарной температуры. 4. Наличие перетоков между слоями не исключает возможность оценки радиуса зоны загрязнения. 5. При расчете нестационарной температуры в слоистом пласте с нарушенной прискважинной зоной для корректного учета влияния перетоков между слоями необходимо использовать либо двумерную численную модель неизотермической фильтрации, либо в одномерной аналитической модели изменить алгоритм внесения поправки к дебиту слоя для малых и больших времен притока.

Ключевые слова

слоистый пласт, скважина, двумерная фильтрация, термометрия, радиальная неоднородность, внутрипластовый переток

Авторы

ФИООрганизацияДополнительноE-mail
Исламов Денис ФавиловичБашкирский государственный университетстарший преподаватель кафедры геофизики физикотехнического институтаislamovden@rambler.ru
Рамазанов Айрат ШайхуллиновичБашкирский государственный университетдоктор технических наук, профессор кафедры геофизики физико-технического институтаramaz@bsunet.ru
Всего: 2

Ссылки

Азиз Х., Сеттари Э. Математическое моделирование пластовых систем. М.: Недра, 1982. 407 с.
Hawkins M.F.Jr. A note on the skin effect // Trans. AIME. 1956. V. 207. P. 356-357.
Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 488 с.
Басниев К.С., Дмитриев Н.М., Каневская Р.Д., Максимов В.М. Подземная гидромеханика. М.; Ижевск: Институт компьютерных исследований, 2006. 488 с.
Mao Y., Zeidouni M. Temperature Transient Analysis of Characterization of Multilayer Reservoirs with Crossflow. SPE 185654, 2017.
Park H. Well Test Analysis of a multilayered reservoir with formation crossflow: PhD dissertation. Stanford University, 1989.
Бадертдинова Е.Р. Определение фильтрационных и теплофизических параметров слоистого пласта по результатам термогидродинамических и гидродинамических исследований вертикальных скважин на основе теории регуляризации // Вестник Казанского технологического университета. 2015. Т. 18. № 5. С. 194-198.
Ахметова О.В. Нестационарное температурное поле в слоисто-неоднородном ортотропном пористом пласте // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2016. Т. 2. № 3. С. 10-23.
Исламов Д.Ф., Садретдинов А.А. Исследование температурного поля в слоистом пласте // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330. № 8. С. 27-36.
Валиуллин Р.А., Рамазанов А.Ш., Хабиров Т.Р. и др. Интерпретация термогидродинамических исследований при испытании скважины на основе численного симулятора. SPE 176589, 2015.
Muradov K., Davies D., Durham C., Waterhouse R. Transient Pressure and Temperature Interpretation in Intelligent Wells of the Golden Eagle Field. SPE 185817-MS, 2017.
Sui W. Determining multilayer formation properties from transient temperature and pressure measurements: PhD dissertation. Texas A&M University, 2009.
Шарафутдинов Р.Ф., Садретдинов А.А., Шарипов А.М. Численное исследование температурного поля в пласте с трещиной гидроразрыва // Прикладная механика и техническая физика. 2017. Т. 58. № 4. С. 153-162. DOI: 10.15372/PMTF20170415.
Рамазанов А.Ш., Валиуллин Р.А., Садретдинов А.А. и др. Термогидродинамические исследования в скважине для определения параметров прискважинной зоны пласта и дебитов многопластовой системы. SPE 136256-RU, 2010. 23 с.
Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
 Исследование неизотермической двумерной фильтрации в слоистом пласте | Вестник Томского государственного университета. Математика и механика. 2022. № 75. DOI: 10.17223/19988621/75/9

Исследование неизотермической двумерной фильтрации в слоистом пласте | Вестник Томского государственного университета. Математика и механика. 2022. № 75. DOI: 10.17223/19988621/75/9